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Abstract—The state-of-the-art parallel programming ap-
proaches OpenCL and CUDA require so-called host code for pro-
gram’s execution. Implementing host code is often a cumbersome
task, especially when executing OpenCL and CUDA programs on
systems with multiple devices, e.g., multi-core CPU and Graphics
Processing Units (GPUs): the programmer is responsible for ex-
plicitly managing system’s main memory and devices’ memories,
synchronizing computations with data transfers between main
and/or devices’ memories, and optimizing data transfers, e.g., by
using pinned main memory for accelerating data transfers and
overlapping the transfers with computations.

In this paper, we present OCAL (OpenCL/CUDA Abstraction
Layer) – a high-level approach to simplify the development of
host code. OCAL combines five major advantages over the state-
of-the-art high-level approaches: 1) it simplifies implementing
both OpenCL and CUDA host code by providing a simple-
to-use, uniform high-level host code abstraction API; 2) it
supports executing arbitrary OpenCL and CUDA programs; 3) it
simplifies implementing data-transfer optimizations by providing
specially-optimized memory buffers, e.g., for conveniently using
pinned main memory; 4) it optimizes memory management
by automatically avoiding unnecessary data transfers; 5) it
enables interoperability between OpenCL and CUDA host code
by automatically managing the communication between OpenCL
and CUDA data structures and by automatically translating
between the OpenCL and CUDA programming constructs.

Our experiments demonstrate that OCAL significantly sim-
plifies implementing host code with a low runtime overhead for
abstraction.

I. MOTIVATION AND RELATED WORK

OpenCL and CUDA are state-of-the-art approaches to pro-

gramming modern heterogeneous systems equipped with

multi-core CPUs and accelerator devices such as Graphics

Processing Units (GPUs). Both approaches have a common

problem: they demand from the programmer to implement the

so-called host code for executing OpenCL and CUDA device

code (a.k.a. kernel).
Implementing host code is a tedious task: boilerplate low-

level commands are required, e.g., for allocating memory on

the target device and for performing data transfers between

the device’s memory and main memory. Especially when

targeting complex systems which consist of multiple devices,

e.g., two or more GPUs and CPU, OpenCL and CUDA host

code’s implementation becomes cumbersome and error-prone

even for experienced programmers: they have to manage the

memories of different devices, as well as manage system’s

main memory, and they have to explicitly synchronize data

transfers with kernel computations in different devices.

Programming host code becomes additionally complex for

systems with devices from different vendors: e.g., non-NVIDIA

devices are usually programmed using OpenCL, while NVIDIA

devices mostly rely on CUDA for performance reasons [1]

and because CUDA provides better profiling and debugging

tools (e.g., CUDA-MEMCHECK for detecting out-of-bounds

and misaligned memory accesses [2]). Consequently, to pro-

gram a system with both NVIDIA and non-NVIDIA devices,

the programmer has to mix CUDA and OpenCL host code

and explicitly program the communication between CUDA and

OpenCL data structures, e.g., to process the results of different

GPUs (computed using CUDA) on a multi-core CPU using

OpenCL.

For high performance, the host code is expected to be

optimized: using the pinned and unified memory (a.k.a. zero-
copy buffer in OpenCL) can accelerate, hide or even avoid data

transfers between devices’ memories and main memory [3],

[4]. However, using these specially-optimized memory regions

requires from the programmer a detailed knowledge about

low-level OpenCL/CUDA host code functions and flags, thus

making host code even more cumbersome.

There are several successful high-level approaches to sim-

plify the programming process for OpenCL and CUDA host

code. However, these focus on only particular host pro-

gramming challenges, e.g., only data-transfer optimizations

or only OpenCL or CUDA, respectively, and thus, they are

restricted to only specific application classes. For example,

skeleton approaches [5]–[9] simplify host code programming,

e.g., by managing and optimizing memory management, but

are restricted to OpenCL and CUDA programs that can be

expressed via specifically-provided parallel patterns (a.k.a.

algorithmic skeletons [10]). Directive-based approaches such

as OpenACC [11], OpenMP [12] and OpenMPC [13] auto-

matically generate the OpenCL and/or CUDA host code from

sequential program code. However, they also automatically

generate and execute the kernel code, thereby preventing the

programmer from hand-optimizing the kernels as often re-

quired for highest performance [1]. Maat [14], ViennaCL [15],

Maestro [16], Boost.Compute [17] and HPL [18] are built on

top of OpenCL and simplify executing user-defined OpenCL

kernels by providing a high-level API for host program-

ming; unfortunately, they provide no support for CUDA. The

pyOpenCL and pyCUDA approaches [19] enable implementing

OpenCL/CUDA host code in the simple-to-use Python pro-

gramming language, but still require from the programmer to

explicitly deal with low-level details such as data transfers and

synchronization. Multi-device Controllers [20], PACXX [21],

SYCL [22] and OmpSs [23] allow conveniently programming
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OpenCL and/or CUDA-capable devices, while StarPU [24],

PEPPHER [25] and ClusterSs [26] focus on simplifying task

scheduling over multi- and many-core devices. However, these

approaches do not support data-transfer optimizations, e.g.,

overlapping data transfers with computations via pinned main

memory.

In this paper, we present OCAL (the OpenCL/CUDA Abstrac-
tion Layer) – a novel approach to OpenCL and CUDA host code

programming. OCAL is implemented as a C++ library, and it

combines five major advantages over the state-of-the-art high-

level approaches: 1) it simplifies implementing both OpenCL

and CUDA host code by automatically managing low-level

details such as data transfers and synchronization; 2) it allows

executing arbitrary, user-provided OpenCL and CUDA kernels;

3) it simplifies data-transfer optimizations by providing to

the user different, specially-optimized memory buffers, e.g.,

for conveniently using pinned main memory; 4) it optimizes

memory management by automatically detecting and avoiding

unnecessary data transfers; 5) it enables interoperability be-

tween OpenCL and CUDA host code by automatically handling

the communication between the OpenCL and CUDA low-level

APIs and by automatically translating between the OpenCL and

CUDA programming constructs. Moreover, we demonstrate

that OCAL is compatible with existing OpenCL and CUDA

libraries, and that OCAL allows to conveniently profile the

runtime of OpenCL and CUDA programs.

II. ILLUSTRATION OF OCAL

To illustrate the API design of our OCAL approach, we use

a simple, demonstrative example: summing all elements of

a vector (a.k.a. reduction) in CUDA using system’s (possibly

different) GPUs.

A. Using OCAL for CUDA Host Code

Listing 1 is the original NVIDIA’s CUDA reduction ker-

nel provided in [27]. The kernel takes as input the vector

d_Input of N floating point numbers (line 2), and it

computes in parallel a partial sum of the vector’s elements –

one result per started thread (lines 4-9); the results are stored

in d_Result (line 11) and have to be summed to the final

result in the host code after kernel’s execution.

1 __global__ static
2 void reduceKernel(float *d_Result, float *d_Input,

int N)
3 {
4 const int tid = blockIdx.x * blockDim.x +

threadIdx.x;
5 const int threadN = gridDim.x * blockDim.x;
6 float sum = 0;
7
8 for (int pos = tid; pos < N; pos += threadN)
9 sum += d_Input[pos];

10
11 d_Result[tid] = sum;
12 }

Listing 1. NVIDIA’s original CUDA kernel for reduction taken from [27].

Listing 2 shows an excerpt of the CUDA host code for

executing the reduction kernel cooperatively on all of sys-

tem’s CUDA-capable devices; the code is provided by NVIDIA

in [27]. It comprises boilerplate low-level functions, such as

cudaMalloc and cudaMallocHost for allocating device

and main memory (lines 14-17), cudaMemcpyAsync for

performing data transfers between main memory and devices’

memories (lines 25 and 27), cudaStreamCreate for cre-

ating the so-called CUDA streams (line 13) – they are required

to coordinate data transfers and the execution of kernels on

the CUDA devices – and cudaStreamSynchronize for

synchronization (line 34).

Listing 3 demonstrates the OCAL host code that is equivalent

to the NVIDIA’s low-level host code in Listing 2. OCAL is

implemented as a C++ header-only library, thereby freeing

the user from the burdens of compiling, packaging and in-

stalling; to use OCAL, the user only includes the correspond-

ing header file (line 1) and implements a C++ program which

performs four major steps, 1.–4., in the following.

1) Choose Devices: In OCAL, system’s devices are rep-

resented as objects of the class ocal::device; they allow

the user to conveniently perform device computations, as we

demonstrate later in Step 4.

In our example, we execute the reduction kernel on all

of system’s CUDA-capable devices. For this, we use the

function get_all_devices<CUDA> (line 8) which con-

structs one ocal::device<CUDA> object per CUDA de-

vice and returns the constructed device objects in form of

a C++ vector. For constructing the device objects, OCAL

automatically performs the interactions with the low-level

CUDA API to automatically determine and mange the target

devices’ CUDA ids (Listing 2, lines 4-5, 12, 24, 33) and to

initialize and handle the low-level CUDA streams (lines 13, 25-

27, 34, 42) – per default, 32 streams per device, enabling

simultaneously executing multiple kernels on a device and

consequently a better hardware utilization (a.k.a. Hyper-Q in

NVIDIA terminology [28]). The device id and CUDA streams

are encapsulated in the OCAL device objects to hide them from

the user.

The user can also choose a specific CUDA device. For this,

he initializes an ocal::device<CUDA> object by using

either 1) device’s name as string, e.g., "Tesla K20", 2) its

numerical device id, or 3) some of its device properties, e.g.,

the first found device with support for double precision and

atomic operations.

2) Declare Kernels: The OCAL user declares an object

of class ocal::kernel (Listing 3, line 11) for each CUDA

kernel to be executed on one of system’s devices. OCAL

kernels are initialized by the kernel’s source code in its string

representation, using either 1) the OCAL-provided function

cuda::source (line 11), or 2) function cuda::path to

use the path to kernel’s source file. If the source code contains

only a single kernel, OCAL automatically extracts kernel’s

name using the C++ regular expression library [29]; otherwise,

the user passes the target kernel’s name to the OCAL kernel.

Optionally, the user can also pass CUDA compiler flags to the
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1 int main(int argc, char **argv)
2 {
3 // initialization
4 int i, j, gpuBase, GPU_N;
5 cudaGetDeviceCount(&GPU_N);
6 //...
7
8 /* ... prepare input data ... */
9

10 // Allocate device and host memory
11 for (i = 0; i < GPU_N; i++) {
12 cudaSetDevice(i));
13 cudaStreamCreate(&plan[i].stream));
14 cudaMalloc((void **)&plan[i].d_Data, plan[i

].dataN * sizeof(float));
15 cudaMalloc((void **)&plan[i].d_Sum, ACCUM_N

* sizeof(float));
16 cudaMallocHost((void **)&plan[i].

h_Sum_from_device, ACCUM_N * sizeof(
float));

17 cudaMallocHost((void **)&plan[i].h_Data,
plan[i].dataN * sizeof(float));

18 for (j = 0; j < plan[i].dataN; j++)
19 plan[i].h_Data[j] = (float)rand()/(float)

RAND_MAX;
20 }
21
22 // Perform data transfers and start device

computations
23 for (i = 0; i < GPU_N; i++) {
24 cudaSetDevice(i);
25 cudaMemcpyAsync(plan[i].d_Data, plan[i].

h_Data, plan[i].dataN * sizeof(float),
cudaMemcpyHostToDevice, plan[i].stream);

26 reduceKernel<<<BLOCK_N, THREAD_N, 0, plan[i
].stream>>>(plan[i].d_Sum, plan[i].
d_Data, plan[i].dataN);

27 cudaMemcpyAsync(plan[i].h_Sum_from_device,
plan[i].d_Sum, ACCUM_N *sizeof(float),
cudaMemcpyDeviceToHost, plan[i].stream);

28 }
29
30 // combine GPUs’ results
31 for (i = 0; i < GPU_N; i++) {
32 float sum;
33 cudaSetDevice(i);
34 cudaStreamSynchronize(plan[i].stream);
35 sum = 0;
36 for (j = 0; j < ACCUM_N; j++)
37 sum += plan[i].h_Sum_from_device[j];
38 *(plan[i].h_Sum) = (float)sum;
39 cudaFreeHost(plan[i].h_Sum_from_device);
40 cudaFree(plan[i].d_Sum);
41 cudaFree(plan[i].d_Data);
42 cudaStreamDestroy(plan[i].stream);
43 }
44
45 /* ... Compare GPU and CPU results ... */
46 }

Listing 2. Excerpt of NVIDIA’s original CUDA host code taken from [27]
for executing the CUDA reduction kernel shown in Listing 1. Boilerplate low-
level commands make programming the host code tedious and cumbersome.

kernel object, e.g., -maxrregcount to specify the maxi-

mum number of registers to use, or -D name=definition
to replace in kernel’s code each textual occurrence of name
by definition.

We enable just-in-time (JIT) compilation and thus benefiting

from runtime values (a.k.a. multi-stage programming [30])

1#include "ocal.hpp"
2
3int main()
4{
5int N = /* arbitrary chunk size */;
6
7// 1. choose devices
8auto devices = ocal::get_all_devices<CUDA>();
9
10// 2. declare kernel
11ocal::kernel reduction = cuda::source( /*

reduction kernel */ );
12
13const int GS = 32, BS = 256;
14
15// 3. prepare kernels’ inputs
16ocal::buffer<float> in ( N * devices.size() );
17ocal::buffer<float> out( GS*BS * devices.size() );
18
19std::generate(in.begin(), in.end(), std::rand);
20
21// 4. start device computations
22for( auto& dev : devices )
23dev( reduction )
24( dim3( GS ), dim3( BS ) )
25( write(out.begin()+dev.id()* GS*BS, GS*BS ),
26read (in.begin() +dev.id()* N , N ),
27N );
28
29auto res =

std::accumulate( out.begin(), out.end(),
std::plus<float>() );

30
31std::cout << res << std::endl;
32}

Listing 3. The OCAL host code for executing the CUDA reduction kernel
in Listing 1. As compared to low-level CUDA host code (Listing 2), OCAL
frees the user from using boilerplate low-level commands, thus making the
host code simpler.

by passing kernels in their string representation to OCAL,

leading to a better performance. For example, the user can

replace the input size N in kernel’s code (Listing 1, line 8)

by its actual value (Listing 3, line 5), thereby enabling more

aggressive compiler optimizations, e.g., loop unrolling. For the

replacement the user can use the CUDA compiler flag -D.

The OCAL kernel class contains pre-implemented low-level

code – based on NVIDIA’s Runtime Compilation Library
(NVRTC) [27] – which is automatically called by OCAL for

compiling the CUDA kernel’s code. To minimize the cost for

the runtime compilation, OCAL stores the compiled kernels

in the OCAL kernel object – and also on the system’s hard

drive – and reuses it for further computations; this happens

transparently for the user.

3) Prepare Kernels’ Inputs: CUDA kernels take as their

input the values of fundamental types (e.g., int and float),

vector types (e.g., int2 and float4) and/or device buffers,

i.e., pointers to a contiguous range of memory on a partic-

ular device (a.k.a. device array in CUDA). While values of

fundamental and vector types are passed straightforwardly

to a kernel, passing buffers requires preparation and thus

programming effort from the CUDA user: the special low-

level functions cudaMalloc/cudaFree (Listing 2, lines 14-

15, 40-41) have to be used for allocating/de-allocating mem-
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ory on the target device, and function cudaMemcpyAsync
(lines 25 and 27) is used for transferring data between main

memory and devices’ memories. The effort for programming

in CUDA increases for complex applications where a buffer’s

content should be read/written on multiple devices, e.g., the

partial results of one device should be combined in parallel on

another device: the programmer then is in charge of explicitly

managing multiple buffers – one per device – and to perform

the device-to-device data transfers. Moreover, synchronization

is a further challenge that has to be managed by the CUDA

programmer: e.g., a data transfer from main memory to a

device’s memory has to be completed before a kernel on

that device reads the data, and the kernel has to be finished

before its computed data is transferred from the device to main

memory. This requires a careful management of the multiple

CUDA streams (lines 13, 25-27, 34, 42). Especially, for appli-

cations where devices’ computations have interdependencies,

e.g., the result of one device is used as input on another device,

the user has to use and manage so-called CUDA events which

are created as synchronization points in the different devices’

streams. Events have to be carefully managed by the user to

avoid race conditions which become especially challenging

when multiple streams are used per device (e.g., as done

in OCAL for a better hardware utilization – see discussion

before).

To free the user from the burdens of preparing low-level

CUDA buffers and explicitly managing synchronization, OCAL

provides the high-level buffer class ocal::buffer: it repre-

sents a portion of data that can be used for kernel computations

on each of system’s devices. For this, OCAL buffers encapsu-

late one low-level CUDA buffer per used device and a region

of main memory – the CUDA buffers and main memory mirror

the same data. The OCAL buffer class automatically manages

memory by 1) allocating memory on a device when the buffer

is used for kernel computations on that device (see Step 4) and

by de-allocating the memory when the buffer is destructed;

2) updating an encapsulated low-level CUDA device buffer or

main memory before reading or writing it by automatically

performing data transfers; 3) managing synchronization across

multiple streams, i.e., OCAL ensures transparently for the user

that device and/or main memory can be simultaneously read

but not be simultaneously written or read and written, and

OCAL ensures correct synchronization for complex applica-

tions with interdependent device computations by carefully

managing and using CUDA events.

An OCAL buffer (Listing 3, lines 16-17) is passed to an

OCAL device object (lines 25-26) to use the buffer’s data as

kernel’s input, and the buffer is accessed in the host code via

a convenient interface analogous to that of the C++ standard

vector type [29].

OCAL is implemented to be compatible with the C++

Standard Template Library (STL). For example, we use the STL

function std::generate (line 19) to conveniently fill the

OCAL buffer in with random numbers, and we use function

std::accumulate to combine the GPUs’ partial results on

the CPU after kernels’ execution (line 29).

In our reduction example of Listing 3, the OCAL buffer in
(line 16) comprises the CUDA devices’ input values – N ran-

dom floating point numbers (line 19) per device according to

the original CUDA example in [27]; the buffer out (line 17)

is for the devices’ partial results.

4) Start Device Computations: To start device com-

putations, the user chooses an OCAL device object (this is

described in Step 1) and passes to it: i) the ocal::kernel
to be executed (declared in Step 2), ii) the kernel’s execution
configuration – the number of thread blocks and threads per

block (a.k.a. grid and block size in CUDA), and iii) kernel’s

input arguments, i.e., values of fundamental/vector types such

as float and float4, and/or OCAL buffer objects which

represent low-level CUDA buffers (prepared in Step 3). OCAL

then uses the pre-implemented CUDA code of the high-level

OCAL classes to automatically allocate devices’ memories and

main memory, perform data transfers, and execute the kernel.

In our reduction example (Listing 3), we process equally-

sized chunks of the input cooperatively on system’s CUDA-

capable devices (line 22), analogously as in the NVIDIA’s host

code (Listing 2, lines 11, 23, 31). For this, we pass to each

OCAL device object: 1) the OCAL reduction kernel (Listing 3,

line 23), 2) the kernel’s corresponding grid and block size

GS and BS (line 24) which we have chosen according to the

NVIDIA sample (line 13), and 3) kernel’s three input arguments

(lines 25-27). The input arguments are: the input buffer in
comprising the numbers to sum up, the output buffer out in

which the kernels’ partial results are stored, and the device’s

input size N. Since each device accesses only a chunk of

buffers in and out, we pass also C++ iterators to chunk’s

first element – returned by function begin() – summed

with the corresponding offset, and the chunk size, i.e., GS*BS
elements in case of buffer out (line 25) and N elements in

case of buffer in (line 26). Alternatively to the chunk size, the

user can use an iterator pointing to chunk’s end. By setting the

chunk for each device, OCAL avoids the costly transferring of

the entire buffers in and out between main memory and a

device’s memory and only transfers one chunk per device and

buffer.

Functions are called in OCAL asynchronously, i.e., the

control returns immediately to the main thread which only

blocks when one of kernel’s output buffers is accessed in the

host code. To differentiate between kernels’ input and output

buffers, OCAL provides the user with three different buffer
tags: read, write and read_write (Listing 3, lines 25-

26); they signal to OCAL how the kernel accesses a buffer. The

tags enable OCAL to automatically build a data dependency

graph which OCAL uses transparently for the user in order

to 1) coordinate device computations, e.g., a computation does

not start until other computations on its input/output buffers

have been finished, and 2) avoid unnecessary data transfers,

e.g., OCAL avoids a data transfer from main memory to a

device’s memory or between different devices’ memories if a

buffer is only written by the kernel or if the data have been

transferred previously to the device (a.k.a. lazy-copy [6]), and

OCAL avoids transferring the data back after kernel’s execution

411

Authorized licensed use limited to: Universitaet Muenster. Downloaded on December 04,2023 at 07:12:28 UTC from IEEE Xplore.  Restrictions apply. 



if buffer was only read and thus not modified by the kernel.

For example, in Listing 3, analogously to the NVIDIA’s hand-

optimized low-level host code in Listing 2, the content of

buffer out is not copied to devices’ memories by OCAL as

it is tagged with write and as such not read by the devices,

and the buffer in is not copied from devices’ memories to

main memory as it is only read by the kernel. OCAL blocks

the main thread according to its automatically generated data

dependency graph in line 29 where kernel’s output buffer

out is accessed by function begin(); the computation of

the main thread continues when the kernels finish and their

results are transferred by OCAL from devices’ memory to

main memory, so that they become accessible for function

begin().

B. Using OCAL for OpenCL Host Code

OCAL provides in addition to its high-level host code

interface for CUDA (as described in Section II-A) a fur-

ther, analogous high-level interface to simplify programming

OpenCL host code. For example, for executing the OpenCL

reduction kernel in [31] (which is equivalent to the CUDA

kernel in Listing 1), the user only has to slightly modify

the CUDA example of Listing 3, as follows: 1) replace

function get_all_devices<CUDA> in line 8 by func-

tion get_all_devices<OpenCL> to acquire all OpenCL-

compatible devices from OCAL, and 2) set the OCAL kernel

object in line 11 to the OpenCL kernel’s source code using

the OCAL-function opencl::source. OCAL then automat-

ically performs the low-level OpenCL commands for executing

the OpenCL reduction kernel on all of system’s OpenCL-

capable devices which may be of different vendors, e.g., Intel

multi-core CPU and NVIDIA GPU. All OCAL optimizations for

CUDA host code are also provided by OCAL for OpenCL, e.g.,

avoiding unnecessary data transfers, caching kernel binaries

for reducing JIT-compilation overhead, and using multiple

streams (a.k.a. command queue in OpenCL terminology) for a

better hardware utilization.

III. OPENCL-CUDA INTEROPERABILITY IN OCAL

OCAL allows to arbitrarily combine OCAL host code for

OpenCL and CUDA in the same program (we call this OpenCL-
CUDA interoperability). For example, an OCAL buffer with

the results of a CUDA computation can be passed to an

OpenCL device object to be further processed in parallel

on system’s multi-core CPU. Moreover, OCAL allows exe-

cuting a CUDA kernel on an OpenCL device for portability

reasons [32], e.g., to perform a CUDA kernel on an Intel

multi-core CPU, and OCAL also allows to execute an OpenCL

kernel on a CUDA device for higher performance – the CUDA

compiler often generates more efficient machine code for

NVIDIA devices than OpenCL’s compiler [1]. For this, OCAL

automatically performs source-to-source translation between

the OpenCL and CUDA kernel programming languages. Our

translation engine is currently a proof-of-concept implementa-

tion that is based on the C++ regular expression library [29]

and has some limitations: advanced C++ features such as

automatic type deduction and template meta programming are

not supported yet.

Listing 4 demonstrates how OCAL is used to utilize sys-

tem’s multi-core CPU in our OCAL reduction example of

Listing 3: we use OpenCL to further sum the GPUs’ partial

results (obtained with CUDA) in parallel on system’s multi-

core CPU, rather than summing them only sequentially as

done in Listing 3 (and also in the original CUDA host code in

Listing 2). For this, we replace line 29 of our OCAL program

(Listing 3) by the code in Listing 4. In this optimized code, we

use system’s multi-core CPU (line 1), and we declare buffer

cpu_res (line 6) for CPU’s partial results. We then start

parallel computations on the CPU by passing to the OCAL

OpenCL device object: 1) the reduction kernel (line 8) – it

comprises CUDA device code which is automatically translated

by OCAL to the equivalent OpenCL code so that it can be

executed on the multi-core CPU via OpenCL; 2) the execution

configuration (line 9) which we choose as one thread group

per CPU’s core, and we choose the thread group size as CPU’s

SIMD vector length (lines 3-4); 3) the kernel’s input arguments

(line 10). The input arguments are: i) the OCAL buffer out
(Listing 3, line 17), ii) the buffer cpu_res for CPU’s partial

results (Listing 4, line 6), and iii) the input size, i.e, the number

of floating numbers that are comprised by buffer out. Buffer

out contains the GPUs’ partial results that are obtained with

CUDA (Listing 3, line 25) and thus reside in a low-level CUDA

data structure that is internally managed by buffer out. OCAL

copies the results, according to its interoperability feature,

transparently from the user to an OpenCL data structure so

that it can be passed to the OpenCL reduction kernel.

Note that in Listing 4, we set the execution configura-

tion, analogously to before (Listing 3, line 24), according to

CUDA’s approach as grid and block size using function dim3.

In OpenCL, the execution configuration (a.k.a. NDRange in

OpenCL terminology) is usually set as global and local size –

the total number of threads and thread group size – which can

be done in OCAL by using the OCAL function nd_range,

rather than dim3. OCAL allows the user to arbitrarily choose

between setting the execution configuration as either grid and

1ocal::device<OpenCL_CPU> cpu;
2
3int NUM_CORES = /* number of CPU’s cores */;
4int VL = /* CPU’s SIMD vector length */;
5
6ocal::buffer cpu_res( NUM_CORES*VL );
7
8cpu( reduction )
9( dim3( NUM_CORES ) , dim3( VL ) )
10( write( cpu_res ), read( out ), out.size() );
11
12auto res = std::accumulate( cpu_res.begin(),

cpu_res.end(),
std::plus<float>() );

Listing 4. Improved excerpt for OCAL host code from Listing 3, line 29:
OCAL’s OpenCL-CUDA interoperability allows summing GPU’s partial
results – obtained with CUDA – in parallel on the multi-core CPU using
OpenCL.
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block size (using OCAL’s function dim3) or as global and

local size (using function nd_range) for both OpenCL and

CUDA device objects.

In the following, we demonstrate that OCAL’s source-to-

source translation feature in the reverse direction – from

OpenCL to CUDA – contributes to a better kernel performance

due to the usually higher efficiency of CUDA for NVIDIA

devices as compared to OpenCL [33].

Figure 1 demonstrates the speedups of the OpenCL GEMM

kernel (GEneral Matrix Multiplication) of the popular OpenCL

BLAS library CLBlast [34] on an NVIDIA Tesla K20 GPU; the

bars show the speedup of the kernel when translated by OCAL

to CUDA over their initial OpenCL implementation. We show

the results for 20 input sizes that are heavily used in the deep

learning framework Caffe [35]; as concrete neural network, we

use Caffe’s siamese sample for handwriting recognition [36].

We observe that using an equivalent CUDA kernel for CLBlast’s

OpenCL GEMM kernel leads to speedups of up to 2. This is

because CUDA generates and executes more efficient NVIDIA

machine code as compared to OpenCL [1]. The overhead

for the translation — 250ms on our system — is negligible

because once the GEMM kernel is translated to CUDA, it is

automatically stored by OCAL and reused for each new call –

in the siamese sample, GEMM is called over > 106 times on

each of the input sizes in Figure 1.

Listing 5 demonstrates that using OCAL, the CLBlast’s

OpenCL GEMM kernel can be easily translated and executed

in the CUDA programming framework. As shown in line 5,

the user only passes the kernel’s OpenCL code (line 1) to an

OCAL CUDA device object (declared in line 3); OCAL then

automatically translates the OpenCL code to CUDA, and uses

the CUDA framework for executing the translated kernel.

1 ocal::kernel gemm = opencl::source(
/* GEMM’s OpenCL code */ )

2
3 ocal::device<CUDA> gpu( "Tesla K20" );
4
5 gpu( gemm )
6 ( /* ... */ )
7 ( /* ... */ );

Listing 5. Using OCAL for conveniently executing the CLBlast’s OpenCL
GEMM kernel in the CUDA framework for higher performance.

IV. ADVANCED OCAL USAGE

A. Data Transfer Optimizations

OCAL provides in addition to its standard buffer

type ocal::buffer (introduced in Section II), two

further buffer types: 1) ocal::pinned_buffer,

and 2) ocal::unified_buffer; both are used

analogously to OCAL’s standard buffer type. As compared

to an OCAL standard buffer, OCAL’s pinned buffer uses

internally pinned main memory which enables fast data

transfers between main memory and devices’ memories [4],

and pinned memory is also required for overlapping data

transfers with device computations [37]. However, since

pinned memory has a high allocation time, it should only

be used if many data transfers are performed. OCAL’s

unified buffer type uses unified memory which is beneficial

when kernels access main memory sparsely and the target

device provides a hardware support for unified memory [38].

Especially when targeting CPUs, using unified memory

(a.k.a. zero-copy buffer in OpenCL [3]) avoids data transfers

since CPUs’ device memories coincides with system’s main

memory [3].

The OpenCL and CUDA documents [3], [4] recommend

the programmer to straightforwardly test which allocation

type – naive, pinned or unified – suits best for their appli-

cations, dependent on the target hardware. However, testing

the special allocation types – pinned and unified – requires

a significant effort from the programmer. For example, for

using pinned memory in standard OpenCL, the user has to

initialize an OpenCL-specific cl_mem object using the special

flag CL_MEM_ALLOC_HOST_PTR, and he has to use the

special function clEnqueueMapBuffer to get access to

the pinned memory region comprised by the cl_mem object.

Moreover, the user is in charge of explicitly synchronizing the

buffer (e.g., before it is read by a kernel), using the function

clEnqueueUnmapMemObject, and the user has to use

multiple OpenCL command queues to enable overlapping data

transfers with computations [37].

The two optimized OCAL buffer types automatically handle

the inconvenient low-level interactions with the OpenCL and

CUDA API for allocating and using these special memory

regions. Especially, the user can easily switch between differ-

ent allocation types by only changing the OCAL buffer type,

e.g., from ocal::buffer to ocal::pinned_buffer
for using pinned memory instead of naively allocated memory.

Figure 2 (left) shows the runtime of Intel’s hand-optimized

OpenCL ZeroCopy benchmark [39] for evaluating unified

memory on an Intel Xeon E5 CPU, compared to the runtime

of the equivalent OCAL program which uses OCAL’s unified

buffer type – the Intel benchmark computes Ambient Occlusion
which is popular in the field of visual computing. According to

the benchmark’s implementation, we measure the runtime for

data transfers and the kernel’s execution, i.e., we ignore the

runtimes for initializing OpenCL, compiling the kernel, etc.

We observe that OCAL achieves a competitive runtime with

the low-level OpenCL code. This is because OCAL’s unified

buffers use – analogously to the Intel’s benchmark – unified

memory which enables avoiding data transfers when targeting

CPU architectures (as discussed above).

Figure 2 (right) shows the runtime comparison of NVIDIA’s

benchmark overlap-data-transfers [37] with OCAL

using its pinned buffer type; the benchmark computes trigono-

metric functions to evaluate the performance of pinned main

memory. We perform experiments on an NVIDIA Tesla K20

GPU. Analogously to before, we measure only the runtime

for data transfers and the kernel executions, according to

our reference benchmark. OCAL shows the same performance

as the low-level CUDA code: OCAL’s pinned buffers use

internally pinned main memory, analogously to the NVIDIA’s
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Fig. 1. Speedup of CLBlast’s OpenCL GEMM kernel [34] (higher is better) when translated with OCAL to CUDA as compared to its original OpenCL
implementation on an NVIDIA Tesla K20 GPU for 20 input sizes that are heavily used in the deep learning framework Caffe [35].

Fig. 2. Runtime comparison of OCAL (lower is better) with low-level
OpenCL and CUDA host code for benchmarking the unified memory on Intel
CPU (left) and pinned memory on NVIDIA GPU (right). OCAL achieves
competitive performance with the hand-optimized low-level code.

benchmark, thus enabling fast data transfers and overlapping

the transfers with computations.

B. OCAL Compatibility with existing OpenCL/CUDA Libraries

There is a broad range of existing, expert-implemented

OpenCL/CUDA libraries such as the OpenCL linear algebra

library CLBlast [34] and the CUDA library cuFFT for Fast

Fourier Transforms [27]. To enable compatibility between

OCAL and such libraries, OCAL’s three buffer types (discussed

in Section II and IV-A) can be cast to the native buffer

representation of OpenCL and CUDA: cl_mem in case of

OpenCL and void* in case of CUDA. The cast happens either

automatically in OCAL – then, the OpenCL/CUDA buffer is

returned that belongs to the most recently used device – or,

alternatively, the user can use the OCAL buffers’ function

get_cuda_buffer(dev) to get the CUDA buffer for a

specific device dev. Here, dev is either an OCAL device ob-

ject, the device’s name as string, or device’s numerical CUDA

device id. For OpenCL, the three OCAL buffer types provide

the analogous member function get_opencl_buffer.

C. Profiling OpenCL/CUDA Programs with OCAL

OCAL enables conveniently profiling OpenCL

and CUDA programs, i.e., without requiring the

use of inconvenient profiling functions such as

cudaEventRecord and cudaEventSynchronize
(as CUDA), or clGetEventProfilingInfo and

clWaitForEvents (as OpenCL). To enable profiling

in OCAL, the user only defines the C preprocessor macro

OCAL_ENABLE_PROFILING; OCAL then automatically

measures and outputs the runtimes for initializing

OpenCL/CUDA, performing data transfers, executing kernels,

and compiling the kernels. Additionally, OCAL stores the

measured runtimes in a JSON file – a popular file format for

human-readable name-value pairs.

V. EXPERIMENTAL EVALUATION

We experimentally prove that OCAL simplifies implement-

ing both OpenCL and CUDA host code, with a low runtime

overhead for abstraction.
For the runtime evaluation, we use a system equipped with

two Intel Xeon E5-2640 v2 8-core CPUs, clocked at 2GHz with

128GB main memory and hyper-threading enabled, as well

as two NVIDIA Tesla K20m GPUs. We perform experiments

using both the CPUs and GPUs as OpenCL devices. System’s

two CPUs are represented in OpenCL as a single device with

32 compute units, corresponding to the overall 2 × 16 logical

cores. For runtime measurements, we use the unix time
command. As C++ compiler, we use clang version 3.8.1 with

its -O3 optimization flag enabled on the CentOS operating

system version 7.4.
We perform our experiments by comparing the expert-

implemented, real-world, multi-device code samples

provided by Intel [40] and NVIDIA [27] for OpenCL

and CUDA with equivalent OCAL programs. The Intel

samples are: 1) intel_ocl_multidevice_basic
for computing scaled dot product, and

2) intel_ocl_tone_mapping_multidevice for

high dynamic range tone mapping. For CUDA, we use the

following three NVIDIA’s samples: 1) simpleMultiGPU
for reduction, 2) MonteCarloMultiGPU for a Monte

Carlo experiment, and 3) nbody for N-body simulation. We

compare each sample with the equivalent OCAL program in

terms of code complexity and runtime.
We measure the code complexity using four classical met-

rics for the overall programming effort: 1) Lines of Code,

excluding blank lines and comments, 2) COCOMO develop-

ment effort in person months [41], 3) McCabe’s cyclomatic

complexity [42], and 4) the Halstead development effort [43].

McCabe’s cyclomatic complexity is the number of linearly

independent paths through the source code, while the Halstead

development effort metric is based on the number of operators

and operands in the source code. Low cyclomatic complexity

and Halstead development effort imply that code is simpler

to develop and debug. We measure the metrics LOC and CC

with the tool provided in [44], the DE with [45], and HDE

with [46].
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Sample Code LOC DE CC HDE

OpenCL 293 0,68 21 57.523

OCAL 54 0,12 8 10.729

OpenCL 523 1,25 88 290.102

OCAL 246 0,57 32 114.451

CUDA 110 0,26 14 19.980

OCAL 56 0,12 13 11.974

CUDA 336 0,82 32 131.259

OCAL 190 0,45 24 76.337

CUDA 812 1,96 80 412.182

OCAL 434 1,03 37 226.962

Reduction

Monte-Carlo

N-body

HDR-Tone-Mapping

Scaled-Dot-Product

Fig. 3. Code complexity of the OpenCL and CUDA samples as compared to
their OCAL counterparts using the classical metrics: 1) Lines of Code (LOC),
2) COCOMO development effort in person months (DE), 3) McCabe’s
cyclomatic complexity (CC), and 4) Halstead development effort (HDE). The
metrics indicate that OCAL code is significantly more simple than low-level
OpenCL and CUDA host code.

Figure 3 compares the code complexity of the OpenCL

and CUDA samples with their OCAL counterparts. The kernel

code is excluded in our measurements because OCAL and the

OpenCL/CUDA samples use the same codes. We observe that

OCAL programs are significantly more simple: on average they

1) require 2.72× fewer lines of code (LOC) in case of OpenCL

and 1.85× lines in case of CUDA, 2) require a 2.8× less

development effort (DE) in case of OpenCL and 1.9× in case of

CUDA, 3) have a cyclomatic complexity (CC) that is reduced

by a factor of 2.73× for OpenCL and 1.7× for CUDA, and

4) their Halstead development effort (HDE) is reduced by the

factor 2.78× (OpenCL) and 1.79× (CUDA). Even for simple ap-

plications, e.g., Scaled-Dot-Product and Reduction,

OCAL programs are significantly more simple than their corre-

sponding low-level OpenCL/CUDA equivalents because of the

boilerplate code required by the low-level approaches, e.g., for

initializing OpenCL/CUDA and for performing data transfers.

OCAL programs for OpenCL are more simple than OCAL

programs for CUDA when comparing them to low-level code

because OpenCL requires boilerplate commands for devices of

different vendors while CUDA targets NVIDIA devices only,

making programming OpenCL more complex than CUDA.

Figures 4 and 5 demonstrate the speedups (or slowdowns

if < 1) of our high-level OCAL programs as compared to

their corresponding low-level samples in OpenCL and CUDA.

We present results for each of OCAL’s three buffer types –

buffer (B), pinned buffer (PB), and unified buffer (UB) – for

which the OpenCL and CUDA documents [3], [4] recommend

to naively test which type suits best for a concrete combination

of target application and hardware architecture. The low-level

samples all use pinned main memory which corresponds to

using OCAL’s pinned buffer type (the corresponding bars

are filled dark grey for clarification). We run the Intel’s

Fig. 4. Speedup/slowdown of OCAL (higher is better) over Intel’s OpenCL
samples on two Intel Xeon E5 CPUs for each of OCAL’s three buffer
types: buffer (B), pinned buffer (PB), and unified buffer (UB). The buffer
type that corresponds to the memory used in the reference implementations is
filled dark grey. Speedups are computed using the median runtime of 30 runs.
We observe that OCAL’s performance is competitive to low-level OpenCL
host code.

OpenCL samples on system’s Intel CPUs and the NVIDIA

CUDA samples on the system’s NVIDIA GPUs, according to

our reference implementations.

Fig. 5. Speedup/slowdown of OCAL (higher is better) over NVIDIA’s CUDA
samples on two NVIDIA Tesla K20m GPUs using OCAL’s three buffer
types: buffer (B), pinned buffer (PB) and unified buffer (UB). The buffer
type that corresponds to the memory used in the reference implementations
is filled dark grey. Speedups are computed using the median runtime of 30
runs. OCAL’s performance is competitive to low-level CUDA host code.

We observe that OCAL’s high-level approach causes a quite

low runtime overhead of < 2% in case of OpenCL and < 7%
in case of CUDA when using pinned memory (dark grey bars)

which is the memory type that is also used by the reference

implementations. This is due to modern compilers’ efficiency –

in our case, the clang compiler – which significantly optimize

OCALs abstraction overhead, e.g., by performing optimiza-

tions such as inline expansion [47]. For the two further OCALs

buffer types – buffer and unified buffer – we sometimes

observe the same or even slightly better performance of OCAL

as compared to the reference implementations. This is because

the references use pinned memory which causes a high alloca-

tion time for these samples on our system. In contrast, OCAL’s

buffer and unified buffer types use straightforwardly allocated

or unified memory, respectively, causing a lower allocation

time (as discussed in Section IV-A). The better performance

of OCAL for OpenCL as compared to CUDA is because the
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OpenCL samples implement and use several helper functions,

e.g., for selecting the OpenCL platform, which, analogously

to OCAL, cause slight runtime overhead.

VI. CONCLUSION

We present OCAL – a high-level approach for conveniently

developing OpenCL and CUDA host code. OCAL allows easily

executing arbitrary, user-provided OpenCL and CUDA kernels

by automatically managing main memory and devices’ mem-

ories, handling synchronization, minimizing data transfers,

and supporting data transfer optimization between device and

main memory through high-level buffer classes. Furthermore,

OCAL allows interoperability between OpenCL and CUDA

host code by automatically moving data between OpenCL

and CUDA data structures and by performing source-to-source

translation between the OpenCL and CUDA kernel languages.

Our experimental evaluation on real-world samples from Intel

and NVIDIA shows that OCAL significantly simplifies host

code as compared to standard OpenCL and CUDA, with a low

runtime overhead for abstraction.
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