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Abstract
In the state-of-the-art parallel programming approaches OpenCL and CUDA, so-
called host code is required for program’s execution. Efficiently implementing host 
code is often a cumbersome task, especially when executing OpenCL and CUDA 
programs on systems with multiple nodes, each comprising different devices, e.g., 
multi-core CPU and graphics processing units; the programmer is responsible for 
explicitly managing node’s and device’s memory, synchronizing computations 
with data transfers between devices of potentially different nodes and for optimiz-
ing data transfers between devices’ memories and nodes’ main memories, e.g., 
by using pinned main memory for accelerating data transfers and overlapping the 
transfers with computations. We develop distributed OpenCL/CUDA abstraction 
layer (dOCAL)—a novel high-level C++ library that simplifies the development of 
host code. dOCAL combines major advantages over the state-of-the-art high-level 
approaches: (1) it simplifies implementing both OpenCL and CUDA host code by 
providing a simple-to-use, high-level abstraction API; (2) it supports executing arbi-
trary OpenCL and CUDA programs; (3) it allows conveniently targeting the devices 
of different nodes by automatically managing node-to-node communications; (4) it 
simplifies implementing data transfer optimizations by providing different, specially 
allocated memory regions, e.g., pinned main memory for overlapping data transfers 
with computations; (5) it optimizes memory management by automatically avoid-
ing unnecessary data transfers; (6) it enables interoperability between OpenCL and 
CUDA host code for systems with devices from different vendors. Our experiments 
show that dOCAL significantly simplifies the development of host code for hetero-
geneous and distributed systems, with a low runtime overhead.
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1  Motivation and related work

We consider modern distributed, heterogeneous systems comprising one or sev-
eral nodes equipped with multi-core CPUs and accelerator devices such as graph-
ics processing units (GPUs). The state-of-the-art approaches to programming 
such systems are OpenCL and CUDA. A common problem of these approaches is 
that they require the programmer to implement the so-called host code for execut-
ing OpenCL and CUDA device code (a.k.a. kernel).

Implementing host code is often a tedious task: boilerplate low-level com-
mands are required, e.g., for allocating memory on the target device and for per-
forming data transfers between the device’s memory and main memory. Espe-
cially when targeting complex systems which consist of multiple nodes each 
equipped with different devices, e.g., two or more GPUs and CPU, host code’s 
implementation becomes cumbersome and error-prone even for an experienced 
programmer: she has to manage the memories of different devices which may 
belong to different nodes, as well as manage the nodes’ main memories, and she 
has to explicitly synchronize data transfers with kernel computations in different 
devices.

Host code development becomes additionally complex for systems with devices 
from different vendors: e.g., non-NVIDIA devices are usually programmed using 
OpenCL, while NVIDIA devices mostly rely on CUDA for performance rea-
sons [32] and because CUDA provides better profiling and debugging tools [37]. 
Therefore, to program a system with both NVIDIA and non-NVIDIA devices, the 
programmer has to mix CUDA and OpenCL host code and explicitly program the 
communication between CUDA and OpenCL data structures, e.g., to combine the 
results of different GPUs (computed using CUDA) on a multi-core CPU using 
OpenCL.

To achieve high performance, the host code must be optimized: using the 
pinned and unified memory (a.k.a. zero-copy buffer in OpenCL) can accelerate, 
hide or even avoid data transfers between devices’ memories and the main mem-
ory [23, 38]. However, using these specially optimized memory regions requires 
from the programmer a detailed knowledge about low-level OpenCL/CUDA host 
code functions and flags, thus making host code even more cumbersome.

There are several successful high-level approaches to simplify the program-
ming process for OpenCL and CUDA host code. However, these focus on only 
particular host programming challenges, e.g., only data transfer optimizations or 
only OpenCL or CUDA, respectively, and thus, they are restricted to only spe-
cific application classes. For example, skeleton approaches  [2, 5, 14, 15, 49] 
simplify host code programming, e.g., by managing and optimizing memory 
management, but they are restricted to OpenCL and CUDA programs that can 
be expressed via specifically provided parallel patterns (a.k.a. algorithmic skel-
etons  [16]). Directive-based approaches such as OpenACC  [55], OpenMP  [8] 
and OpenMPC [30] automatically generate the OpenCL and/or CUDA host code, 
but they also automatically generate and execute the kernel code, thereby pre-
venting the programmer from hand-optimizing the kernels as often required for 
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highest performance [32]. The systems built on top of OpenCL–Maat [42], Vien-
naCL [46], Maestro [47], Boost.Compute [51] and HPL [54]—simplify executing 
user-defined OpenCL kernels by providing a high-level API for host program-
ming; unfortunately, they provide no support for CUDA. The pyOpenCL and 
pyCUDA approaches  [28] enable implementing OpenCL/CUDA host code in 
the simple-to-use Python programming language, but they still require from the 
programmer to explicitly deal with low-level details, such as data transfers and 
synchronization. Multi-device controllers  [33], PACXX   [18],  SYCL   [43] and 
OmpSs  [13] allow conveniently programming OpenCL and/or CUDA-capable 
devices, while StarPU [6], PEPPHER [9] and ClusterSs [52] focus on simplifying 
task scheduling over multi- and many-core devices. However, these approaches 
do not support data transfer optimizations, e.g., overlapping data transfers with 
computations. Moreover, the majority of the related work targets only single-
node systems, thereby missing the full performance potential of modern HPC 
systems with multiple nodes. The SnuCL [27], rCUDA [12], dOpenCL [26] and 
LibWater  [17] approaches target multi-node systems, but they extend the low-
level OpenCL or CUDA user API, rather than providing high-level abstraction 
to ease host programming, e.g., by automatically performing data transfers and 
managing synchronization.

We develop  the Distributed OpenCL/CUDA Abstraction Layer (dOCAL)—a 
high-level approach to OpenCL and CUDA host code programming. dOCAL is 
implemented as a C++ library, and it combines major advantages over the state-
of-the-art approaches: (1) it simplifies implementing both OpenCL and CUDA 
host code by automatically managing low-level details such as data transfers 
and synchronization; (2) it allows executing arbitrary, user-provided OpenCL 
and CUDA kernels; (3) it enables conveniently targeting the devices of multi-
node systems by automatically managing the node-to-node network communica-
tion; (4) it simplifies data transfer optimizations by providing different, specially 
allocated memory classes, e.g., pinned main memory for overlapping data trans-
fers with computations; 5) it optimizes memory management by automatically 
detecting and avoiding unnecessary data transfers; 6) it enables interoperability 
between OpenCL and CUDA host code by automatically handling the communi-
cation between OpenCL and CUDA data structures and by automatically translat-
ing between the OpenCL and CUDA kernel programming languages.

Moreover, dOCAL is compatible with existing OpenCL and CUDA libraries, 
it supports interconnecting with auto-tuning systems, and it allows conveniently 
profiling the runtime behavior of OpenCL and CUDA programs.

The remainder of the paper is organized as follows. In Sect.  2, we illustrate 
the usage of our dOCAL library, using a simple single-node example. Afterward, 
in Sect. 3, we demonstrate dOCAL’s OpenCL-CUDA interoperability feature. In 
Sect.  4, we show how dOCAL is used for multi-node systems, and in Sect.  5, 
we present dOCAL’s data transfer optimizations. After presenting dOCAL’s 
advanced features in Sect. 6, we present our experimental results in Sect. 7. Sec-
tion 8 concludes our paper.
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2  Illustration of dOCAL

To illustrate the API design of our dOCAL library and its usage, we use a sim-
ple, demonstrative example: summing all elements of a vector (a.k.a. reduction) in 
CUDA using system’s GPUs.

2.1  Using dOCAL for deploying CUDA host code

Listing 1 shows the original NVIDIA’s CUDA reduction kernel provided in  [37]. 
The kernel takes as input the vector d_Input of N floating point numbers (line 
2), and it computes in parallel a partial sum of the vector’s elements—one result 
per started thread (lines 4–9); the results are stored in d_Result (line 11) and 
have to be combined (summed up) to the final result in the host code after kernel’s 
execution.
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Listing 2 shows an excerpt of the CUDA host code for executing the reduction 
kernel (of Listing 1) cooperatively on all of system’s CUDA-capable devices; this 
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code is provided by NVIDIA in [37]. It comprises boilerplate low-level functions, 
such as cudaMalloc and cudaMallocHost for allocating device and main 
memory (lines 13–16), cudaMemcpyAsync for performing data transfers between 
main memory and devices’ memories (lines 23 and 25), cudaStreamCreate for 
creating the so-called CUDA streams (line 12)—they are required to coordinate data 
transfers and the execution of kernels on the CUDA devices—and cudaStream-
Synchronize for synchronization (line 31).

Listing 3 demonstrates, for the sake of comparison, the dOCAL host code that 
is equivalent to the NVIDIA’s low-level host code in Listing 2. dOCAL is imple-
mented as a C++ header-only library, thereby freeing the user from the burden of 
compiling, packaging and installing; to use dOCAL, the user only includes the cor-
responding header file (line 1) and implements a C++ program which performs four 
major steps, 1–4, in the following.

1. Choose devices In dOCAL, system’s devices are represented as objects of the 
class docal::device; they allow the user to conveniently perform device com-
putations, as we demonstrate later in Step 4.
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In our example, we execute the reduction kernel on all of system’s CUDA-capa-
ble devices. For this, we use the function get_all_local_devices<CUDA> 
(Listing 3, line 8) which constructs one docal::device<CUDA> object per sys-
tem’s CUDA device, and it returns the constructed device objects in form of a C++ 
vector. For constructing the device objects, dOCAL automatically interacts with the 
low-level CUDA API to automatically determine and manage the target devices’ 
CUDA ids (Listing 2, lines 4–5, 11, 22, 30) and to initialize and handle the low-level 
CUDA streams (lines 12, 23–25, 31, 39)—per default, 32 streams per device, thus 
enabling simultaneously executing multiple kernels on a device and consequently 
a better hardware utilization (a.k.a. Hyper-Q in NVIDIA terminology  [40]). The 
device id and CUDA streams are encapsulated in the dOCAL device objects to hide 
them from the user.

The user can also choose a specific CUDA device. For this, she initializes a 
docal::device<CUDA> object by using either (1) device’s name as string, e.g., 
“Tesla K20”, (2) its numerical device id or (3) some of its device properties, 
e.g., the first found device with support for double precision and atomic operations.

2. Declare kernels The dOCAL user declares an object of class 
docal::kernel (Listing 3, line 11) for each CUDA kernel to be executed on 
one of system’s devices. dOCAL kernels are initialized by the kernel’s source 
code in its string representation, using either (1) the dOCAL-provided function 
cuda::source (line 11) or (2) function cuda::path to use the path to kernel’s 
source file. If the source code contains only a single kernel, dOCAL automatically 
extracts kernel’s name using the C++ regular expression library  [48]; otherwise, 
the user passes the target kernel’s name to the dOCAL kernel. Optionally, the user 
can also pass CUDA compiler flags to the kernel object, e.g., -maxrregcount 
to specify the maximum number of registers to use, or -D name=definition to 
replace in kernel’s code each textual occurrence of name by definition.

We enable Just-in-time (JIT) compilation and thus benefiting from runtime val-
ues (a.k.a. multi-stage programming [45]) for a better performance by passing ker-
nels in their string representation to dOCAL. For example, the user can replace the 
input size N in kernel’s code (Listing 1, line 8) by its actual value (Listing 3, line 5), 
thereby enabling more aggressive compiler optimizations, e.g., loop unrolling. For 
this replacement, the user can use the CUDA compiler flag -D. The dOCAL kernel 
class contains pre-implemented low-level code—based on NVIDIA’s Runtime Com-
pilation Library (NVRTC) [37]—which is automatically called by dOCAL for com-
piling the code. To minimize the cost for the runtime compilation, dOCAL stores 
the compiled kernels in the dOCAL kernel object, and also on the system’s hard 
drive, and reuses it for further computations; this happens transparently for the user.

3. Prepare kernels’ inputs CUDA kernels take as their input the values of fun-
damental types (e.g., int and float), vector types (e.g., int2 and float4) and/
or device buffers, i.e., pointers to a contiguous range of memory on a particu-
lar device (a.k.a. device array in CUDA). While values of fundamental and vec-
tor types are passed straightforwardly to a kernel, passing buffers requires prepa-
ration and thus programming effort from the CUDA user: the special low-level 
functions cudaMalloc/cudaFree (Listing 2, lines 13–14, 37–38) have to 
be used for allocating/de-allocating memory on the target device, and function 
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cudaMemcpyAsync (lines 23 and 25) is used for transferring data between main 
memory and devices’ memories. The effort for programming in CUDA increases for 
complex applications where a buffer’s content is read/written on multiple devices, 
e.g., the partial results of one device are combined in parallel on another device; 
in such cases, the programmer is in charge of explicitly managing multiple buff-
ers—one per device—and performing the device-to-device data transfers. Moreover, 
synchronization is a further challenge that has to be managed by the CUDA pro-
grammer: e.g., a data transfer from main memory to a device’s memory has to be 
completed before a kernel on that device reads the data, and the kernel has to be fin-
ished before its computed data are transferred from the device to main memory. This 
requires a careful management of the multiple CUDA streams (Listing 2, lines 12, 
23–25, 31, 39). For complex applications where devices’ computations have interde-
pendencies, e.g., the result of one device is used as input on another device, the user 
has to also use and manage so-called CUDA events which are created as synchroni-
zation points in the different devices’ streams. Events have to be carefully managed 
by the user to avoid race conditions, which becomes especially challenging when 
multiple streams are used per devices (as done in dOCAL for a better hardware utili-
zation – see discussion before).

In order to free the user from the burdens of preparing low-level CUDA buffers 
for kernels’ execution and explicitly managing synchronization, dOCAL provides 
the high-level buffer class docal::buffer; it represents a portion of data that 
can be used for kernel computations on each of system’s devices. For this, dOCAL 
buffers encapsulate one low-level CUDA buffer per used device and a region of 
main memory—the buffers and main memory mirror the same data. The dOCAL 
buffer class automatically manages memory by: (1) allocating memory on a device 
when the buffer is used for kernel computations on that device (see Step 4) and by 
de-allocating the memory when the buffer is destructed; (2) updating an encapsu-
lated low-level CUDA device buffer or main memory before reading or writing it 
by automatically performing data transfers; (3) managing synchronization across 
multiple streams, i.e., dOCAL ensures transparently for the user that device and/or 
main memory can be simultaneously read but not be simultaneously written or read 
and written, and dOCAL ensures correct synchronization for complex applications 
with interdependent device computations, by carefully using and managing CUDA 
events.

A dOCAL buffer (Listing 3, lines 16–17) is passed to a dOCAL device object 
(lines 25–26) to use the buffer’s data as kernel’s input, and the buffer is accessed 
in the host code via a convenient interface analogous to that of the C++ standard 
vector type [48]. dOCAL is implemented to be compatible with the C++ Standard 
Template Library (STL). For example, we use the STL function std::generate 
(line 19) to conveniently fill the dOCAL buffer in with random numbers, and we 
use function std::accumulate to combine the GPUs ’ partial results on the 
CPU after kernels’ execution (line 29). In our reduction example of Listing 3, the 
dOCAL buffer in (line 16) comprises the CUDA devices’ input values—N random 
floating point numbers (line 19) per device according to the original CUDA example 
in [37]; the buffer out (line 17) is for the devices’ partial results.
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4. Start device computations To start computations on a device, the user 
chooses a dOCAL device object (this is described in Step 1) and passes to it: 
(i) the docal::kernel to be executed (declared in Step 2), (ii) the kernel’s 
execution configuration—the number of thread blocks and threads per block 
(a.k.a. grid and block size in CUDA) and (iii) kernel’s input arguments, i.e., val-
ues of fundamental/vector types such as float and float4, and/or dOCAL buffer 
objects which represent low-level CUDA buffers (prepared in Step 3). dOCAL 
then uses the pre-implemented CUDA code of the high-level dOCAL classes to 
automatically allocate devices’ memories and main memory, perform data trans-
fers and execute the kernel.

In the reduction example (Listing 3), we process equally sized chunks of the input 
cooperatively on system’s CUDA-capable devices (line 22), analogously as in the 
NVIDIA’s host code (Listing 2, lines 10, 21, 28). For this, we pass to each dOCAL 
device object: (1) the dOCAL reduction kernel (Listing 3, line 23), (2) the kernel’s 
corresponding grid and block size GS and BS (line 24) which we have chosen (line 
13) according to the NVIDIA sample and 3) kernel’s three input arguments (lines 
25–27). The input arguments are: the input buffer in comprising the floating point 
numbers to sum up, the output buffer out in which the kernels’ partial results are 
stored—one per thread—and the device’s input size N. Since each device accesses 
only a chunk of buffers in and out, we pass also C++ iterators to chunk’s first 
element—returned by function begin()—summed with the corresponding offset, 
and the chunk size, i.e., GS*BS elements in case of buffer out (line 25) and N ele-
ments in case of buffer in (line 26). Alternatively to the chunk size, the user can use 
an iterator pointing to chunk’s end. By setting iterators to the chunk for each device, 
dOCAL avoids the costly transferring of the entire buffers in and out between 
main memory and a device’s memory and only transfers one chunk per device and 
buffer.

We implement functions in dOCAL as asynchronously, i.e., the control returns 
immediately to the main thread which only blocks when one of the kernel’s out-
put buffers is accessed in the host code. To differentiate between kernels’ input and 
output buffers, dOCAL provides the user with three different buffer tags: read, 
write and read_write (Listing 3, lines 25–26); they signal to dOCAL how the 
kernel accesses a buffer. The tags enable dOCAL to automatically (1) coordinate 
device computations, e.g., a computation does not start until other computations on 
its input/output buffers have been finished, and (2) minimize unnecessary data trans-
fers, e.g., dOCAL avoids a data transfer from main memory to a device’s memory 
or between different devices’ memories if a buffer is only written by the kernel or if 
the data have been transferred previously to the device (a.k.a. lazy-copy [14]), and 
dOCAL avoids transferring the data back after kernel’s execution if buffer was only 
read and thus not modified by the kernel. For example, in Listing 3, analogously to 
the NVIDIA’s hand-written low-level host code in Listing 2, the content of buffer 
out is not copied to devices’ memories by dOCAL as it is tagged with write 
and as such not read by the devices, and the buffer in is not copied from devices’ 
memories to main memory as it is only read by the kernel. dOCAL automatically 
blocks the main thread (in line 29) where kernel’s output buffer out is accessed by 
function begin(); the computation of the main thread continues when the kernels 
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finish and their results are transferred by dOCAL from devices’ memory to main 
memory, so that they become accessible for function begin().

2.2  Using dOCAL for deploying OpenCL host code

In addition to its high-level host code interface for CUDA (as described in Sect. 2.1), 
dOCAL provides an analogous high-level interface to simplify programming 
OpenCL host code. For example, for executing the OpenCL reduction kernel pro-
vided by NVIDIA in  [36] (which is equivalent to the CUDA kernel in Listing 1), 
the user only has to slightly modify the dOCAL code in Listing 3 (for CUDA), as 
follows: (1) replace function get_all_local_devices<CUDA> (in line 8) by 
function get_all_local_devices<OpenCL> to acquire all OpenCL-com-
patible devices from dOCAL and (2) set the dOCAL kernel object (in line 11) to 
the OpenCL kernel’s source code using the dOCAL-function opencl::source. 
dOCAL then automatically performs the low-level OpenCL commands for execut-
ing the OpenCL reduction kernel on all of system’s OpenCL-capable devices which 
may be of different vendors, e.g., Intel multi-core CPU and NVIDIA/AMD GPU. 
All dOCAL optimizations for CUDA host code, e.g., using multiple streams (a.k.a. 
command queue in OpenCL terminology) for better hardware utilization, avoiding 
unnecessary data transfers and caching kernel binaries for reducing the overhead of 
JIT compilation, are also provided by dOCAL for OpenCL.

3  OpenCL‑CUDA interoperability in dOCAL

The dOCAL library supports developing host code for programs that use both 
OpenCL and CUDA kernels, by allowing to arbitrarily combine dOCAL host code 
for OpenCL and CUDA in the same program. (We call this OpenCL-CUDA inter-
operability) For example, a dOCAL buffer with the results of a CUDA kernel can 
be passed to an OpenCL device object to be further processed in parallel on sys-
tem’s multi-core CPU. Furthermore, dOCAL allows executing a CUDA kernel on 
an OpenCL device to achieve portability [11], e.g., to perform a CUDA kernel on 
an Intel multi-core CPU. dOCAL also allows for executing an OpenCL kernel on 
a CUDA device for higher performance—CUDA compilers often generate more 
efficient machine code for NVIDIA devices than OpenCL compilers [32]. For this, 
dOCAL automatically performs source-to-source translation between the OpenCL 
and CUDA kernel programming languages. Our translation engine is currently 
a proof-of-concept implementation that is based on the C++ regular expression 
library  [48] and has some limitations: advanced C++ features such as automatic 
type deduction and template meta programming are not supported.

Listing 4 demonstrates how dOCAL is used to utilize system’s multi-core CPU 
in our reduction example of Listing 3: we use OpenCL to further sum the GPUs’ 
partial results (obtained with CUDA) in parallel on system’s multi-core CPU, 
rather than summing them only sequentially as done in Listing 3 (and also in the 
original CUDA host code in Listing 2). For this, we replace line 29 of our dOCAL 
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program (Listing 3) by the code in Listing 4. In this optimized code, we use sys-
tem’s multi-core CPU (line 1), and we declare buffer cpu_res (line 6) for CPU’s 
partial results. We then start parallel computations on the CPU by passing the fol-
lowing to the dOCAL OpenCL device object: (1) the reduction kernel (line 8)—it 
comprises the CUDA device code (in Listing 1) which is automatically translated 
by dOCAL to the equivalent OpenCL code to be executable on the multi-core CPU 
via OpenCL; (2) the execution configuration (line 9) which we choose as one thread 
group per CPU’s core, and we choose the thread group size as CPU’s SIMD vector 
length (lines 3–4); (3) the kernel’s input arguments (line 10). The input arguments 
are: (i) dOCAL buffer out (Listing 3, line 17), (ii) buffer cpu_res for CPU’s par-
tial results (Listing 4, line 6) and (iii) input size, i.e, the number of floating numbers 
in buffer out. Buffer out contains the GPUs ’ partial results that are obtained with 
CUDA (Listing 3, line 25) and thus reside in a low-level CUDA data structure which 
is internally managed by buffer out. dOCAL copies the results, according to its 
interoperability feature (transparently for the user) to an OpenCL data structure so 
that it can be passed to the OpenCL reduction kernel.

Note that in Listing 4, we set the execution configuration (Listing 4, line 9), 
analogously to before (Listing 3, line 24), according to CUDA ’s approach as grid 
and block size using function dim3. In OpenCL, the execution configuration (a.k.a. 
NDRange in OpenCL terminology) is usually set as global and local size—the total 
number of threads and thread group size—which can be done in dOCAL by using 
the dOCAL function nd_range, rather than dim3. dOCAL allows the user to 
arbitrarily choose weather setting the execution configuration as grid and block size 
(using dOCAL’s function dim3) or as global and local size (using function nd_
range) for both OpenCL and CUDA device objects.

In the following, we demonstrate that dOCAL’s source-to-source translation 
feature—from OpenCL to CUDA—contributes to a better kernel performance 
due to the usually higher efficiency of CUDA on NVIDIA devices as compared to 
OpenCL  [25].

Figure 1 shows the measured speedups of the OpenCL GEMM kernel (general 
matrix multiplication) of the popular OpenCL BLAS library CLBlast   [34] on an 
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NVIDIA Tesla K20 GPU; the bars show the speedup of the kernel when translated 
by dOCAL to CUDA over their initial OpenCL implementation (higher is better). 
We show the results for 20 input sizes that are heavily used in the deep learning 
framework Caffe [24]; as concrete neural network, we use Caffe’s siamese sample 
for handwriting recognition [29]. We observe that using an equivalent CUDA kernel 
for CLBlast ’s OpenCL GEMM kernel leads to speedups of up to 2, because CUDA 
generates more efficient NVIDIA machine code as compared to OpenCL  [32]. The 
overhead for the translation (not included in our measurements in Fig. 1)—250ms 
on our system—is negligible because once the GEMM kernel is translated from 
OpenCL to CUDA, it is automatically stored by dOCAL on the system and reused 
for each new call—in the siamese sample, GEMM is called over > 106 times on 
each input size in Fig. 1, requiring > 6 total computation time on our system.

Listing 5 demonstrates that using dOCAL, the CLBlast ’s OpenCL GEMM kernel 
can be easily translated and executed in the CUDA programming framework. As shown 
in line 5, the user only passes the kernel’s OpenCL code (line 1) to a dOCAL CUDA 
device object (declared in line 3); dOCAL then automatically translates the OpenCL 
code to CUDA, and uses the CUDA framework for executing the translated kernel.

4  Using dOCAL for distributed systems

In a distributed system (a.k.a. cluster) with several nodes, our dOCAL library ena-
bles conveniently executing OpenCL and CUDA kernels on nodes that are con-
nected via TCP/IP. For this, the user starts a dOCAL daemon process on the target 

Fig. 1  Speedup (higher is better) of CLBlast’s OpenCL GEMM kernel  [34] when translated with 
dOCAL to CUDA as compared to its original OpenCL implementation on an NVIDIA Tesla K20 GPU 
for 20 input sizes that are heavily used in the deep learning framework Caffe [24]
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nodes; dOCAL then automatically handles node-to-node data transfers and starts 
kernel computations on the nodes’ devices, using the Boost.Asio C++ networking 
library [4].

Our example in Listing 3 which uses the devices of a single node can be eas-
ily extended to use the devices of all nodes: the user only replaces the func-
tion docal::get_all_local_devices<CUDA>() in line 8 by function 
docal::get_all_devices<CUDA>(); dOCAL then automatically acquires 
the devices of different nodes, transfers the devices’ input and output data over the 
TCP/IP network and synchronizes the different nodes’ computations.

The user can also target specific remote devices. For this, a docal::device 
object is initialized additionally with the target node’s name, rather than with 
only the device name, device id or device properties. For example, the user uses 
docal::device<CUDA>(“gpu_node”, 0) to get the CUDA device with id 
0 on the node with name gpu_node. Alternatively to the node’s name, the user can 
use the node’s IP address.

5  Data transfer optimizations

In addition to its standard buffer type docal::buffer (introduced in Sect.  2), 
dOCAL provides two further buffer types: (1) docal::pinned_buffer and 
(2) docal::unified_buffer; both are used analogously to dOCAL’s standard 
buffer type. As compared to a dOCAL standard buffer, dOCAL’s pinned buffer uses 
internally pinned main memory  [38] which enables fast data transfers between a 
node’s main memory and its devices’ memories, and pinned memory is also required 
for overlapping data transfers with device computations [39]. However, since pinned 
memory has a high allocation time, it should only be used if many data transfers are 
performed. dOCAL’s unified buffer type uses unified memory [41] which is benefi-
cial when kernels access main memory sparsely and when the target device provides 
hardware support for unified memory. Especially when targeting CPUs, using uni-
fied memory (a.k.a. zero-copy buffer in OpenCL  [23]) avoids data transfers between 
devices’ memory and main memory because for CPUs ’ device memories and main 
memory coincide [23].

The OpenCL and CUDA documents  [23, 38] recommend the programmer to 
empirically test which allocation type—naive, pinned or unified—suits best for their 
applications, dependent on the target hardware. However, testing these special allo-
cation types—pinned and unified—requires a significant effort from the program-
mer. For example, for using pinned memory in low-level OpenCL, the user has 
to initialize an OpenCL-specific cl_mem object using the special flag CL_MEM_
ALLOC_HOST_PTR, and she has to use the special function clEnqueueMap-
Buffer to get access to the pinned memory region comprised by the cl_mem 
object. Moreover, the user is in charge of explicitly synchronizing the buffer (e.g., 
before it is read by a kernel), using the function clEnqueueUnmapMemObject, 
and user has to use multiple command queues—the OpenCL equivalent to CUDA 
streams—to enable overlapping data transfers with computations [39].
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The two optimized dOCAL buffer types automatically handle the inconvenient 
low-level interactions with the OpenCL and CUDA API for allocating and using 
these special memory regions. Moreover, the user can easily switch between dif-
ferent allocation types by only changing the dOCAL buffer type, e.g., from 
docal::buffer to docal::pinned_buffer to use pinned memory instead 
of naively allocated memory.

Figure  2 (left) shows the runtime of Intel’s OpenCL ZeroCopy bench-
mark [20]—for evaluating unified memory—on an Intel Xeon E5 CPU, compared 
to the runtime of an equivalent dOCAL program which uses dOCAL’s unified 
buffer type—the Intel benchmark computes Ambient Occlusion which is popular in 
the field of visual computing. According to the benchmark’s implementation, we 
measure the runtime for data transfers and the kernel’s execution, i.e., we ignore 
the runtimes for initializing OpenCL, compiling the kernel, etc. We observe that 
dOCAL achieves competitive runtime with the low-level OpenCL code. This is 
because dOCAL’s unified buffers use, analogously to the Intel’s benchmark, unified 
memory which enables avoiding data transfers when targeting CPU architectures (as 
discussed above).

Figure 2 (right) shows the runtime comparison of NVIDIA’s benchmark over-
lap-data-transfers  [39] with dOCAL using its pinned buffer type; the 
benchmark computes trigonometric functions to evaluate the performance of pinned 
main memory. We perform experiments on an NVIDIA Tesla K20 GPU. Analo-
gously to before, we measure only the runtime for data transfers and the kernel exe-
cutions, according to our reference benchmark. dOCAL achieves the same perfor-
mance as the low-level CUDA code: dOCAL’s pinned buffers use internally pinned 
main memory, analogously to the NVIDIA’s benchmark, thus enabling fast data 
transfers and overlapping the transfers with computations.

6  Advanced dOCAL usage

6.1  dOCAL compatibility with existing OpenCL/CUDA libraries

There is a broad range of expert-implemented OpenCL/CUDA libraries, such as 
the OpenCL linear algebra library CLBlast   [34] and the CUDA library cuDNN 

Fig. 2  Runtime comparison (lower is better) of dOCAL with low-level OpenCL and CUDA host code 
for benchmarking the unified memory on Intel CPU (left) and pinned memory on NVIDIA GPU (right). 
dOCAL achieves competitive performance with the low-level code
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for Deep Learning applications  [22]. To enable compatibility between dOCAL 
and such libraries, dOCAL’s three buffer types (discussed in Sects.  2 and  5) can 
be cast to the native buffer representation of OpenCL and CUDA: cl_mem in case 
of OpenCL and void* in case of CUDA. This cast happens either automatically 
in dOCAL—then, the OpenCL/CUDA buffer is returned that belongs to the most 
recently used device—or, alternatively, the user can use the dOCAL buffers’ func-
tion get_cuda_buffer(dev) to get the CUDA buffer for a specific device 
dev. Here, dev is either a dOCAL device object, the device’s name as string, or 
device’s numerical CUDA device id. For OpenCL, dOCAL provides the analogous 
member function get_opencl_buffer.

6.2  Auto‑tuning support

dOCAL supports the user in the cumbersome task of finding a kernel’s good-per-
forming values of performance-critical parameters, e.g., cache/thread block sizes 
and loop unrolling factors. For this, dOCAL allows conveniently interconnecting 
with an auto-tuning system—they use advanced search heuristics and/or machine 
learning techniques to automatically explore the search space of a kernel’s perfor-
mance-critical parameters; the determined values are then used to build an opti-
mized kernel [1].

Auto-tuning systems for OpenCL and CUDA can be conveniently generated 
by using the auto-tuning framework (ATF) [1]: the user annotates the kernel code 
with tuning directives which specify its performance-critical parameters by their: 
(1) types (e.g., int or float), (2) ranges of possible values, and (3) possible inter-
dependencies (e.g., a parameter has to evenly divide another parameter). ATF then 
automatically generates the corresponding auto-tuner that optimizes the kernel for a 
target hardware.

For connecting dOCAL with an auto-tuner, the user provides to dOCAL the con-
crete auto-tuner for its kernel, e.g., generated with ATF, by storing it to a corre-
sponding path on the hard drive. dOCAL then manages transparently from the user 
the cumbersome tasks of (1) calling the auto-tuner for each device on which the ker-
nel is executed, (2) storing on the hard drive the auto-tuned kernel that is obtained 
by the auto-tuner, and (3) reusing the auto-tuned version of the kernel in each fol-
lowing kernel execution.

For high-quality tuning results, auto-tuning has to be performed depending also 
on runtime values (e.g., input size), and not only depending on the target device [53]. 
For this, the user generates the corresponding auto-tuner—this is described in detail 
in  [1]—and passes to the dOCAL kernel object the concrete runtime values using 
dOCAL’s tuning function. For example, to auto-tune the reduction kernel (shown 
in Listing 1) also for the input size N (Listing 3, line 5), the user: (1) provides the 
input-aware auto-tuner for the kernel [1], and (2) initializes the dOCAL kernel (in 
line 11) with the input size N using the tuning function, i.e., ocal::kernel 
reduction = { cuda::source(/*...*/), tuning(N) };
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6.3  Profiling OpenCL/CUDA programs with dOCAL

dOCAL enables convenient profiling of OpenCL and CUDA programs, i.e., without 
requiring the use of low-level profiling functions, such as cudaEventRecord and 
cudaEventSynchronize (for CUDA), or clGetEventProfilingInfo and 
clWaitForEvents (for OpenCL). To enable profiling in dOCAL, the user only 
defines the C preprocessor macro dOCAL_ENABLE_PROFILING; dOCAL then 
automatically measures and outputs the runtimes for initializing OpenCL/CUDA, 
performing data transfers, executing kernels, and compiling the kernels. Addition-
ally, dOCAL stores the measured runtimes in a JSON file—a popular file format for 
human-readable name-value pairs.

7  Experimental evaluation

We experimentally prove that dOCAL simplifies implementing host code for both 
OpenCL and CUDA, with a low runtime overhead for abstraction. After describing 
our experimental setup in Sect. 7.1, we report experimental results for a single-node 
system (Sect. 7.2) and a multi-node system (Sect. 7.3).

7.1  Experimental setup

For the runtime evaluation, we use a system with two nodes, each equipped with two 
Intel Xeon E5-2640 v2 8-core CPUs, clocked at 2GHz with 128GB main memory 
and hyper-threading enabled, as well as two NVIDIA Tesla K20m GPUs; the two 
nodes are connected via an InfiniBand FDR network. We perform experiments using 
both the CPUs and GPUs as OpenCL devices. A node’s two CPUs are represented 
in OpenCL as a single device with 32 compute units, corresponding to the overall 
2 × 16 logical cores in the node. For runtime measurements, we use the unix time 
command. As C++ compiler, we use clang version 3.8.1 with its -O3 optimiza-
tion flag enabled on the CentOS operating system version 7.4.

7.2  Single‑node experiments

We perform our single-node experiments by comparing to all of the expert-imple-
mented, real-world, multi-device code samples provided by Intel and NVIDIA 
in  [21] and  [37] for OpenCL and CUDA, against equivalent dOCAL programs. 
The Intel samples are: (1) intel_ocl_multidevice_basic for computing 
scaled dot product and (2) intel_ocl_tone_mapping_multidevice for 
high dynamic range tone mapping. For CUDA, we use the three NVIDIA’s samples: 
(1) simpleMultiGPU for reduction, (2) MonteCarloMultiGPU for a Monte 
Carlo experiment and (3) nbody for N-body simulation. We compare each sam-
ple against the equivalent dOCAL program in terms of both code complexity and 
runtime.
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We measure the code complexity using four classical metrics for development 
effort: (1) lines of code (LOC), excluding blank lines and comments, (2) COCOMO 
development effort (DE) in person-months [3], (3) McCabe’s cyclomatic complex-
ity (CC) [31] and (4) the Halstead development effort (HDE) [19]. McCabe’s cyc-
lomatic complexity is the number of linearly independent paths through the source 
code, while the Halstead development effort metric is based on the number of oper-
ators and operands in the source code. Low cyclomatic complexity and Halstead 
development effort imply that code is simpler to develop and debug. We measure 
the metrics LOC and CC with the tool provided in [50], the DE with [10] and HDE 
with [44].

Figure  3 compares the code complexity of the original OpenCL and CUDA 
samples from the vendors with their dOCAL counterparts. The kernel code is 
excluded in our measurements, because dOCAL and the OpenCL/CUDA samples 
use the same kernel codes. We observe that dOCAL programs are significantly 
simpler; on average they (1) require 2.72× fewer lines of code (LOC) in case of 
OpenCL and 1.85× lines in case of CUDA, (2) require a 2.8× less development 
effort (DE) in case of OpenCL and 1.9× in case of CUDA, (3) have a cyclomatic 
complexity (CC) that is reduced by a factor of 2.73× for OpenCL and 1.7× for 
CUDA, and 4) their Halstead development effort (HDE) is reduced by the factor 
2.78× (OpenCL) and 1.79× (CUDA). Even for simple applications, e.g., scaled 
dot product and reduction, dOCAL programs are significantly simpler than their 
low-level OpenCL/CUDA equivalents, because of the boilerplate code required 
by the low-level approaches, e.g., for initializing OpenCL/CUDA and for per-
forming data transfers. We observe that dOCAL programs achieve more reduction 
in complexity for OpenCL than for CUDA, because OpenCL requires boilerplate 
commands for devices of different vendors while CUDA targets NVIDIA devices 
only.

Sample Code LOC DE CC HDE

OpenCL 293 0,68 21 57.523

dOCAL 54 0,12 8 10.729

OpenCL 523 1,25 88 290.102

dOCAL 246 0,57 32 114.451

CUDA 110 0,26 14 19.980

dOCAL 56 0,12 13 11.974

CUDA 336 0,82 32 131.259

dOCAL 190 0,45 24 76.337

CUDA 812 1,96 80 412.182

dOCAL 434 1,03 37 226.962

Reduction

Monte-Carlo

N-body

HDR-Tone-Mapping

Scaled-Dot-Product

Fig. 3  Code complexity of the OpenCL and CUDA samples as compared to their dOCAL counterparts 
using the classical metrics: (1) lines of code (LOC), (2) COCOMO development effort (DE) in person 
months, (3) McCabe’s cyclomatic complexity (CC) and (4) Halstead development effort (HDE). The 
metrics indicate that dOCAL code is significantly simpler than low-level OpenCL and CUDA host code
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Figures 4 and 5 demonstrate the speedups (or slowdowns if < 1 ) of our high-level 
dOCAL programs as compared to their corresponding low-level samples in OpenCL 
and CUDA. We present results for each of dOCAL’s three buffer types—buffer (B), 
pinned buffer (PB) and unified buffer (UB)—for which the OpenCL and CUDA doc-
uments recommend to naively test which type suits best for a particular combination 
of target application and hardware architecture [23, 38]. The low-level samples all 
use pinned main memory which corresponds to using dOCAL’s pinned buffer type 
(the corresponding bars are filled dark gray for clarification). The Intel’s OpenCL 
samples run on a node’s two Intel CPUs, and the NVIDIA CUDA samples run on 
the node’s two NVIDIA GPUs.

We observe that dOCAL’s high-level approach causes a quite low runtime over-
head of < 2% in comparison with OpenCL and < 7% in comparison with CUDA 
when using pinned memory (dark gray bars) as in the low-level samples. This is due 
to modern compilers efficiency—in our case, the clang compiler—which signifi-
cantly optimize dOCAL’s abstraction overhead, e.g., by performing optimizations 
such as inline expansion [7]. For the two further dOCAL’s buffer types—buffer and 
unified buffer—we observe the same or sometimes even slightly better performance 
of dOCAL as compared to the low-level samples. This is caused by the high alloca-
tion time for pinned memory which is used by the samples. In contrast, dOCAL’s 

Fig. 4  Speedup/slowdown (higher is better) of dOCAL over Intel’s OpenCL samples on two Intel Xeon 
E5 CPUs for each of dOCAL’s three buffer types: buffer (B), pinned buffer (PB) and unified buffer (UB). 
The buffer type that corresponds to the memory used in the low-level samples is filled dark gray. Speed-
ups are computed using the median runtime of 30 runs. We observe that dOCAL’s performance is com-
petitive to low-level OpenCL host code

Fig. 5  Speedup/slowdown (higher is better) of dOCAL over NVIDIA’s CUDA samples on two NVIDIA 
Tesla K20m GPUs using dOCAL’s three buffer types: buffer (B), pinned buffer (PB) and unified buffer 
(UB). The buffer type that corresponds to the memory used in the low-level samples is filled dark gray. 
Speedups are computed using the median runtime of 30 runs. dOCAL’s performance is competitive to 
low-level CUDA host code
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buffer (B) and unified buffer (UB) types use straightforwardly allocated memory or 
unified memory, correspondingly, causing a lower allocation time (as discussed in 
Sect. 5). The better performance of dOCAL for OpenCL as compared to CUDA is 
because the OpenCL samples implement and use several helper functions, e.g., for 
selecting the OpenCL platform, which causes runtime overhead.

7.3  Multi‑node experiment

We use the example of general matrix multiplication (GEMM) to demonstrate 
dOCAL’s efficiency on multi-node systems. For this, we use the OpenCL GEMM 
kernel provided by NVIDIA in [35].

Figure 6 shows GEMM ’s runtime on 16384 × 16384 matrices of single preci-
sion floating point numbers (float) when executed (1) on a single local GPU, (2) on 
two local GPUs, and (3) on the four GPUs of two nodes, i.e., two local GPUs (first 
node) and two remote GPUs (second node). We observe that switching from a single 
local GPU to two local GPUs increases performance by a factor of 1.6; when using 
the second node’s two remote GPUs as well (i.e., four GPUs in total), performance 
is increased further by a factor of 1.3. Performance increases more significantly 
when doubling the number of local GPUs, rather than when doubling the number of 
remote GPUs, because using remote GPUs requires communication between differ-
ent nodes. For example, in case of GEMM, chunks of the input matrices have to be 
transferred over the network from the local node to the remote node, making nearly 
5 seconds of runtime. If excluding this overhead, we would achieve again a speedup 
of nearly 1.6× (instead of a speedup of only 1.3), i.e., the overhead for using the 
remote GPUs is mainly caused by the (inherent) node-to-node data transfers over the 
InfiniBand network.

Fig. 6  Runtime comparison (lower is better) of NVIDIA’s general matrix multiplication (GEMM) in 
OpenCL when executed (1) on a single local GPU, (2) on two local GPUs, and (3) on two local GPUs 
and two remote GPUs. Doubling the number of local GPUs speeds up performance by a factor of 1.6; 
using in addition two remote GPUs increases performance further by a factor of 1.3
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8  Conclusion

We present dOCAL—a high-level C++ library for conveniently implementing 
OpenCL and CUDA host code. dOCAL allows easily executing arbitrary OpenCL 
and CUDA kernels on the devices of different nodes by automatically managing 
different nodes’ main memories and their devices’ memories, performing node-to-
node communication, handling synchronization, minimizing data transfers and sup-
porting data transfer optimization between device and main memory. Furthermore, 
dOCAL allows interoperability between OpenCL and CUDA host code by automati-
cally moving data between OpenCL and CUDA data structures and by performing 
source-to-source translation between the OpenCL and CUDA kernel languages. Our 
experimental evaluation on real-world samples from Intel and NVIDIA shows that 
dOCAL arguably simplifies host code as compared to standard OpenCL and CUDA, 
with a low runtime overhead for abstraction.

In future work, we will demonstrate dOCAL’s efficiency for a broad range 
of applications. Furthermore, we aim to improve our OpenCL-to-CUDA/
CUDA–OpenCL translation engine, e.g., by supporting advanced C++ features such 
as automatic type deduction and template meta programming.
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