
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:5117–5138
https://doi.org/10.1007/s11227-019-02829-2

1 3

dOCAL: high‑level distributed programming with OpenCL
and CUDA

Ari Rasch1 · Julian Bigge1 · Martin Wrodarczyk1 · Richard Schulze1 ·
Sergei Gorlatch1

Published online: 30 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In the state-of-the-art parallel programming approaches OpenCL and CUDA, so-
called host code is required for program’s execution. Efficiently implementing host
code is often a cumbersome task, especially when executing OpenCL and CUDA
programs on systems with multiple nodes, each comprising different devices, e.g.,
multi-core CPU and graphics processing units; the programmer is responsible for
explicitly managing node’s and device’s memory, synchronizing computations
with data transfers between devices of potentially different nodes and for optimiz-
ing data transfers between devices’ memories and nodes’ main memories, e.g.,
by using pinned main memory for accelerating data transfers and overlapping the
transfers with computations. We develop distributed OpenCL/CUDA abstraction
layer (dOCAL)—a novel high-level C++ library that simplifies the development of
host code. dOCAL combines major advantages over the state-of-the-art high-level
approaches: (1) it simplifies implementing both OpenCL and CUDA host code by
providing a simple-to-use, high-level abstraction API; (2) it supports executing arbi-
trary OpenCL and CUDA programs; (3) it allows conveniently targeting the devices
of different nodes by automatically managing node-to-node communications; (4) it
simplifies implementing data transfer optimizations by providing different, specially
allocated memory regions, e.g., pinned main memory for overlapping data transfers
with computations; (5) it optimizes memory management by automatically avoid-
ing unnecessary data transfers; (6) it enables interoperability between OpenCL and
CUDA host code for systems with devices from different vendors. Our experiments
show that dOCAL significantly simplifies the development of host code for hetero-
geneous and distributed systems, with a low runtime overhead.

Keywords OpenCL · CUDA · Host code · Distributed system · Heterogenous
system · Interoperability · Data transfer optimization

 * Ari Rasch
 a.rasch@wwu.de; a.rasch@uni-muenster.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0286-0755
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02829-2&domain=pdf

5118 A. Rasch et al.

1 3

1 Motivation and related work

We consider modern distributed, heterogeneous systems comprising one or sev-
eral nodes equipped with multi-core CPUs and accelerator devices such as graph-
ics processing units (GPUs). The state-of-the-art approaches to programming
such systems are OpenCL and CUDA. A common problem of these approaches is
that they require the programmer to implement the so-called host code for execut-
ing OpenCL and CUDA device code (a.k.a. kernel).

Implementing host code is often a tedious task: boilerplate low-level com-
mands are required, e.g., for allocating memory on the target device and for per-
forming data transfers between the device’s memory and main memory. Espe-
cially when targeting complex systems which consist of multiple nodes each
equipped with different devices, e.g., two or more GPUs and CPU, host code’s
implementation becomes cumbersome and error-prone even for an experienced
programmer: she has to manage the memories of different devices which may
belong to different nodes, as well as manage the nodes’ main memories, and she
has to explicitly synchronize data transfers with kernel computations in different
devices.

Host code development becomes additionally complex for systems with devices
from different vendors: e.g., non-NVIDIA devices are usually programmed using
OpenCL, while NVIDIA devices mostly rely on CUDA for performance rea-
sons [32] and because CUDA provides better profiling and debugging tools [37].
Therefore, to program a system with both NVIDIA and non-NVIDIA devices, the
programmer has to mix CUDA and OpenCL host code and explicitly program the
communication between CUDA and OpenCL data structures, e.g., to combine the
results of different GPUs (computed using CUDA) on a multi-core CPU using
OpenCL.

To achieve high performance, the host code must be optimized: using the
pinned and unified memory (a.k.a. zero-copy buffer in OpenCL) can accelerate,
hide or even avoid data transfers between devices’ memories and the main mem-
ory [23, 38]. However, using these specially optimized memory regions requires
from the programmer a detailed knowledge about low-level OpenCL/CUDA host
code functions and flags, thus making host code even more cumbersome.

There are several successful high-level approaches to simplify the program-
ming process for OpenCL and CUDA host code. However, these focus on only
particular host programming challenges, e.g., only data transfer optimizations or
only OpenCL or CUDA, respectively, and thus, they are restricted to only spe-
cific application classes. For example, skeleton approaches [2, 5, 14, 15, 49]
simplify host code programming, e.g., by managing and optimizing memory
management, but they are restricted to OpenCL and CUDA programs that can
be expressed via specifically provided parallel patterns (a.k.a. algorithmic skel-
etons [16]). Directive-based approaches such as OpenACC [55], OpenMP [8]
and OpenMPC [30] automatically generate the OpenCL and/or CUDA host code,
but they also automatically generate and execute the kernel code, thereby pre-
venting the programmer from hand-optimizing the kernels as often required for

5119

1 3

dOCAL: high-level distributed programming with OpenCL and…

highest performance [32]. The systems built on top of OpenCL–Maat [42], Vien-
naCL [46], Maestro [47], Boost.Compute [51] and HPL [54]—simplify executing
user-defined OpenCL kernels by providing a high-level API for host program-
ming; unfortunately, they provide no support for CUDA. The pyOpenCL and
pyCUDA approaches [28] enable implementing OpenCL/CUDA host code in
the simple-to-use Python programming language, but they still require from the
programmer to explicitly deal with low-level details, such as data transfers and
synchronization. Multi-device controllers [33], PACXX [18], SYCL [43] and
OmpSs [13] allow conveniently programming OpenCL and/or CUDA-capable
devices, while StarPU [6], PEPPHER [9] and ClusterSs [52] focus on simplifying
task scheduling over multi- and many-core devices. However, these approaches
do not support data transfer optimizations, e.g., overlapping data transfers with
computations. Moreover, the majority of the related work targets only single-
node systems, thereby missing the full performance potential of modern HPC
systems with multiple nodes. The SnuCL [27], rCUDA [12], dOpenCL [26] and
LibWater [17] approaches target multi-node systems, but they extend the low-
level OpenCL or CUDA user API, rather than providing high-level abstraction
to ease host programming, e.g., by automatically performing data transfers and
managing synchronization.

We develop the Distributed OpenCL/CUDA Abstraction Layer (dOCAL)—a
high-level approach to OpenCL and CUDA host code programming. dOCAL is
implemented as a C++ library, and it combines major advantages over the state-
of-the-art approaches: (1) it simplifies implementing both OpenCL and CUDA
host code by automatically managing low-level details such as data transfers
and synchronization; (2) it allows executing arbitrary, user-provided OpenCL
and CUDA kernels; (3) it enables conveniently targeting the devices of multi-
node systems by automatically managing the node-to-node network communica-
tion; (4) it simplifies data transfer optimizations by providing different, specially
allocated memory classes, e.g., pinned main memory for overlapping data trans-
fers with computations; 5) it optimizes memory management by automatically
detecting and avoiding unnecessary data transfers; 6) it enables interoperability
between OpenCL and CUDA host code by automatically handling the communi-
cation between OpenCL and CUDA data structures and by automatically translat-
ing between the OpenCL and CUDA kernel programming languages.

Moreover, dOCAL is compatible with existing OpenCL and CUDA libraries,
it supports interconnecting with auto-tuning systems, and it allows conveniently
profiling the runtime behavior of OpenCL and CUDA programs.

The remainder of the paper is organized as follows. In Sect. 2, we illustrate
the usage of our dOCAL library, using a simple single-node example. Afterward,
in Sect. 3, we demonstrate dOCAL’s OpenCL-CUDA interoperability feature. In
Sect. 4, we show how dOCAL is used for multi-node systems, and in Sect. 5,
we present dOCAL’s data transfer optimizations. After presenting dOCAL’s
advanced features in Sect. 6, we present our experimental results in Sect. 7. Sec-
tion 8 concludes our paper.

5120 A. Rasch et al.

1 3

2 Illustration of dOCAL

To illustrate the API design of our dOCAL library and its usage, we use a sim-
ple, demonstrative example: summing all elements of a vector (a.k.a. reduction) in
CUDA using system’s GPUs.

2.1 Using dOCAL for deploying CUDA host code

Listing 1 shows the original NVIDIA’s CUDA reduction kernel provided in [37].
The kernel takes as input the vector d_Input of N floating point numbers (line
2), and it computes in parallel a partial sum of the vector’s elements—one result
per started thread (lines 4–9); the results are stored in d_Result (line 11) and
have to be combined (summed up) to the final result in the host code after kernel’s
execution.

5121

1 3

dOCAL: high-level distributed programming with OpenCL and…

Listing 2 shows an excerpt of the CUDA host code for executing the reduction
kernel (of Listing 1) cooperatively on all of system’s CUDA-capable devices; this

5122 A. Rasch et al.

1 3

code is provided by NVIDIA in [37]. It comprises boilerplate low-level functions,
such as cudaMalloc and cudaMallocHost for allocating device and main
memory (lines 13–16), cudaMemcpyAsync for performing data transfers between
main memory and devices’ memories (lines 23 and 25), cudaStreamCreate for
creating the so-called CUDA streams (line 12)—they are required to coordinate data
transfers and the execution of kernels on the CUDA devices—and cudaStream-
Synchronize for synchronization (line 31).

Listing 3 demonstrates, for the sake of comparison, the dOCAL host code that
is equivalent to the NVIDIA’s low-level host code in Listing 2. dOCAL is imple-
mented as a C++ header-only library, thereby freeing the user from the burden of
compiling, packaging and installing; to use dOCAL, the user only includes the cor-
responding header file (line 1) and implements a C++ program which performs four
major steps, 1–4, in the following.

1. Choose devices In dOCAL, system’s devices are represented as objects of the
class docal::device; they allow the user to conveniently perform device com-
putations, as we demonstrate later in Step 4.

5123

1 3

dOCAL: high-level distributed programming with OpenCL and…

In our example, we execute the reduction kernel on all of system’s CUDA-capa-
ble devices. For this, we use the function get_all_local_devices<CUDA>
(Listing 3, line 8) which constructs one docal::device<CUDA> object per sys-
tem’s CUDA device, and it returns the constructed device objects in form of a C++
vector. For constructing the device objects, dOCAL automatically interacts with the
low-level CUDA API to automatically determine and manage the target devices’
CUDA ids (Listing 2, lines 4–5, 11, 22, 30) and to initialize and handle the low-level
CUDA streams (lines 12, 23–25, 31, 39)—per default, 32 streams per device, thus
enabling simultaneously executing multiple kernels on a device and consequently
a better hardware utilization (a.k.a. Hyper-Q in NVIDIA terminology [40]). The
device id and CUDA streams are encapsulated in the dOCAL device objects to hide
them from the user.

The user can also choose a specific CUDA device. For this, she initializes a
docal::device<CUDA> object by using either (1) device’s name as string, e.g.,
“Tesla K20”, (2) its numerical device id or (3) some of its device properties,
e.g., the first found device with support for double precision and atomic operations.

2. Declare kernels The dOCAL user declares an object of class
docal::kernel (Listing 3, line 11) for each CUDA kernel to be executed on
one of system’s devices. dOCAL kernels are initialized by the kernel’s source
code in its string representation, using either (1) the dOCAL-provided function
cuda::source (line 11) or (2) function cuda::path to use the path to kernel’s
source file. If the source code contains only a single kernel, dOCAL automatically
extracts kernel’s name using the C++ regular expression library [48]; otherwise,
the user passes the target kernel’s name to the dOCAL kernel. Optionally, the user
can also pass CUDA compiler flags to the kernel object, e.g., -maxrregcount
to specify the maximum number of registers to use, or -D name=definition to
replace in kernel’s code each textual occurrence of name by definition.

We enable Just-in-time (JIT) compilation and thus benefiting from runtime val-
ues (a.k.a. multi-stage programming [45]) for a better performance by passing ker-
nels in their string representation to dOCAL. For example, the user can replace the
input size N in kernel’s code (Listing 1, line 8) by its actual value (Listing 3, line 5),
thereby enabling more aggressive compiler optimizations, e.g., loop unrolling. For
this replacement, the user can use the CUDA compiler flag -D. The dOCAL kernel
class contains pre-implemented low-level code—based on NVIDIA’s Runtime Com-
pilation Library (NVRTC) [37]—which is automatically called by dOCAL for com-
piling the code. To minimize the cost for the runtime compilation, dOCAL stores
the compiled kernels in the dOCAL kernel object, and also on the system’s hard
drive, and reuses it for further computations; this happens transparently for the user.

3. Prepare kernels’ inputs CUDA kernels take as their input the values of fun-
damental types (e.g., int and float), vector types (e.g., int2 and float4) and/
or device buffers, i.e., pointers to a contiguous range of memory on a particu-
lar device (a.k.a. device array in CUDA). While values of fundamental and vec-
tor types are passed straightforwardly to a kernel, passing buffers requires prepa-
ration and thus programming effort from the CUDA user: the special low-level
functions cudaMalloc/cudaFree (Listing 2, lines 13–14, 37–38) have to
be used for allocating/de-allocating memory on the target device, and function

5124 A. Rasch et al.

1 3

cudaMemcpyAsync (lines 23 and 25) is used for transferring data between main
memory and devices’ memories. The effort for programming in CUDA increases for
complex applications where a buffer’s content is read/written on multiple devices,
e.g., the partial results of one device are combined in parallel on another device;
in such cases, the programmer is in charge of explicitly managing multiple buff-
ers—one per device—and performing the device-to-device data transfers. Moreover,
synchronization is a further challenge that has to be managed by the CUDA pro-
grammer: e.g., a data transfer from main memory to a device’s memory has to be
completed before a kernel on that device reads the data, and the kernel has to be fin-
ished before its computed data are transferred from the device to main memory. This
requires a careful management of the multiple CUDA streams (Listing 2, lines 12,
23–25, 31, 39). For complex applications where devices’ computations have interde-
pendencies, e.g., the result of one device is used as input on another device, the user
has to also use and manage so-called CUDA events which are created as synchroni-
zation points in the different devices’ streams. Events have to be carefully managed
by the user to avoid race conditions, which becomes especially challenging when
multiple streams are used per devices (as done in dOCAL for a better hardware utili-
zation – see discussion before).

In order to free the user from the burdens of preparing low-level CUDA buffers
for kernels’ execution and explicitly managing synchronization, dOCAL provides
the high-level buffer class docal::buffer; it represents a portion of data that
can be used for kernel computations on each of system’s devices. For this, dOCAL
buffers encapsulate one low-level CUDA buffer per used device and a region of
main memory—the buffers and main memory mirror the same data. The dOCAL
buffer class automatically manages memory by: (1) allocating memory on a device
when the buffer is used for kernel computations on that device (see Step 4) and by
de-allocating the memory when the buffer is destructed; (2) updating an encapsu-
lated low-level CUDA device buffer or main memory before reading or writing it
by automatically performing data transfers; (3) managing synchronization across
multiple streams, i.e., dOCAL ensures transparently for the user that device and/or
main memory can be simultaneously read but not be simultaneously written or read
and written, and dOCAL ensures correct synchronization for complex applications
with interdependent device computations, by carefully using and managing CUDA
events.

A dOCAL buffer (Listing 3, lines 16–17) is passed to a dOCAL device object
(lines 25–26) to use the buffer’s data as kernel’s input, and the buffer is accessed
in the host code via a convenient interface analogous to that of the C++ standard
vector type [48]. dOCAL is implemented to be compatible with the C++ Standard
Template Library (STL). For example, we use the STL function std::generate
(line 19) to conveniently fill the dOCAL buffer in with random numbers, and we
use function std::accumulate to combine the GPUs ’ partial results on the
CPU after kernels’ execution (line 29). In our reduction example of Listing 3, the
dOCAL buffer in (line 16) comprises the CUDA devices’ input values—N random
floating point numbers (line 19) per device according to the original CUDA example
in [37]; the buffer out (line 17) is for the devices’ partial results.

5125

1 3

dOCAL: high-level distributed programming with OpenCL and…

4. Start device computations To start computations on a device, the user
chooses a dOCAL device object (this is described in Step 1) and passes to it:
(i) the docal::kernel to be executed (declared in Step 2), (ii) the kernel’s
execution configuration—the number of thread blocks and threads per block
(a.k.a. grid and block size in CUDA) and (iii) kernel’s input arguments, i.e., val-
ues of fundamental/vector types such as float and float4, and/or dOCAL buffer
objects which represent low-level CUDA buffers (prepared in Step 3). dOCAL
then uses the pre-implemented CUDA code of the high-level dOCAL classes to
automatically allocate devices’ memories and main memory, perform data trans-
fers and execute the kernel.

In the reduction example (Listing 3), we process equally sized chunks of the input
cooperatively on system’s CUDA-capable devices (line 22), analogously as in the
NVIDIA’s host code (Listing 2, lines 10, 21, 28). For this, we pass to each dOCAL
device object: (1) the dOCAL reduction kernel (Listing 3, line 23), (2) the kernel’s
corresponding grid and block size GS and BS (line 24) which we have chosen (line
13) according to the NVIDIA sample and 3) kernel’s three input arguments (lines
25–27). The input arguments are: the input buffer in comprising the floating point
numbers to sum up, the output buffer out in which the kernels’ partial results are
stored—one per thread—and the device’s input size N. Since each device accesses
only a chunk of buffers in and out, we pass also C++ iterators to chunk’s first
element—returned by function begin()—summed with the corresponding offset,
and the chunk size, i.e., GS*BS elements in case of buffer out (line 25) and N ele-
ments in case of buffer in (line 26). Alternatively to the chunk size, the user can use
an iterator pointing to chunk’s end. By setting iterators to the chunk for each device,
dOCAL avoids the costly transferring of the entire buffers in and out between
main memory and a device’s memory and only transfers one chunk per device and
buffer.

We implement functions in dOCAL as asynchronously, i.e., the control returns
immediately to the main thread which only blocks when one of the kernel’s out-
put buffers is accessed in the host code. To differentiate between kernels’ input and
output buffers, dOCAL provides the user with three different buffer tags: read,
write and read_write (Listing 3, lines 25–26); they signal to dOCAL how the
kernel accesses a buffer. The tags enable dOCAL to automatically (1) coordinate
device computations, e.g., a computation does not start until other computations on
its input/output buffers have been finished, and (2) minimize unnecessary data trans-
fers, e.g., dOCAL avoids a data transfer from main memory to a device’s memory
or between different devices’ memories if a buffer is only written by the kernel or if
the data have been transferred previously to the device (a.k.a. lazy-copy [14]), and
dOCAL avoids transferring the data back after kernel’s execution if buffer was only
read and thus not modified by the kernel. For example, in Listing 3, analogously to
the NVIDIA’s hand-written low-level host code in Listing 2, the content of buffer
out is not copied to devices’ memories by dOCAL as it is tagged with write
and as such not read by the devices, and the buffer in is not copied from devices’
memories to main memory as it is only read by the kernel. dOCAL automatically
blocks the main thread (in line 29) where kernel’s output buffer out is accessed by
function begin(); the computation of the main thread continues when the kernels

5126 A. Rasch et al.

1 3

finish and their results are transferred by dOCAL from devices’ memory to main
memory, so that they become accessible for function begin().

2.2 Using dOCAL for deploying OpenCL host code

In addition to its high-level host code interface for CUDA (as described in Sect. 2.1),
dOCAL provides an analogous high-level interface to simplify programming
OpenCL host code. For example, for executing the OpenCL reduction kernel pro-
vided by NVIDIA in [36] (which is equivalent to the CUDA kernel in Listing 1),
the user only has to slightly modify the dOCAL code in Listing 3 (for CUDA), as
follows: (1) replace function get_all_local_devices<CUDA> (in line 8) by
function get_all_local_devices<OpenCL> to acquire all OpenCL-com-
patible devices from dOCAL and (2) set the dOCAL kernel object (in line 11) to
the OpenCL kernel’s source code using the dOCAL-function opencl::source.
dOCAL then automatically performs the low-level OpenCL commands for execut-
ing the OpenCL reduction kernel on all of system’s OpenCL-capable devices which
may be of different vendors, e.g., Intel multi-core CPU and NVIDIA/AMD GPU.
All dOCAL optimizations for CUDA host code, e.g., using multiple streams (a.k.a.
command queue in OpenCL terminology) for better hardware utilization, avoiding
unnecessary data transfers and caching kernel binaries for reducing the overhead of
JIT compilation, are also provided by dOCAL for OpenCL.

3 OpenCL‑CUDA interoperability in dOCAL

The dOCAL library supports developing host code for programs that use both
OpenCL and CUDA kernels, by allowing to arbitrarily combine dOCAL host code
for OpenCL and CUDA in the same program. (We call this OpenCL-CUDA inter-
operability) For example, a dOCAL buffer with the results of a CUDA kernel can
be passed to an OpenCL device object to be further processed in parallel on sys-
tem’s multi-core CPU. Furthermore, dOCAL allows executing a CUDA kernel on
an OpenCL device to achieve portability [11], e.g., to perform a CUDA kernel on
an Intel multi-core CPU. dOCAL also allows for executing an OpenCL kernel on
a CUDA device for higher performance—CUDA compilers often generate more
efficient machine code for NVIDIA devices than OpenCL compilers [32]. For this,
dOCAL automatically performs source-to-source translation between the OpenCL
and CUDA kernel programming languages. Our translation engine is currently
a proof-of-concept implementation that is based on the C++ regular expression
library [48] and has some limitations: advanced C++ features such as automatic
type deduction and template meta programming are not supported.

Listing 4 demonstrates how dOCAL is used to utilize system’s multi-core CPU
in our reduction example of Listing 3: we use OpenCL to further sum the GPUs’
partial results (obtained with CUDA) in parallel on system’s multi-core CPU,
rather than summing them only sequentially as done in Listing 3 (and also in the
original CUDA host code in Listing 2). For this, we replace line 29 of our dOCAL

5127

1 3

dOCAL: high-level distributed programming with OpenCL and…

program (Listing 3) by the code in Listing 4. In this optimized code, we use sys-
tem’s multi-core CPU (line 1), and we declare buffer cpu_res (line 6) for CPU’s
partial results. We then start parallel computations on the CPU by passing the fol-
lowing to the dOCAL OpenCL device object: (1) the reduction kernel (line 8)—it
comprises the CUDA device code (in Listing 1) which is automatically translated
by dOCAL to the equivalent OpenCL code to be executable on the multi-core CPU
via OpenCL; (2) the execution configuration (line 9) which we choose as one thread
group per CPU’s core, and we choose the thread group size as CPU’s SIMD vector
length (lines 3–4); (3) the kernel’s input arguments (line 10). The input arguments
are: (i) dOCAL buffer out (Listing 3, line 17), (ii) buffer cpu_res for CPU’s par-
tial results (Listing 4, line 6) and (iii) input size, i.e, the number of floating numbers
in buffer out. Buffer out contains the GPUs ’ partial results that are obtained with
CUDA (Listing 3, line 25) and thus reside in a low-level CUDA data structure which
is internally managed by buffer out. dOCAL copies the results, according to its
interoperability feature (transparently for the user) to an OpenCL data structure so
that it can be passed to the OpenCL reduction kernel.

Note that in Listing 4, we set the execution configuration (Listing 4, line 9),
analogously to before (Listing 3, line 24), according to CUDA ’s approach as grid
and block size using function dim3. In OpenCL, the execution configuration (a.k.a.
NDRange in OpenCL terminology) is usually set as global and local size—the total
number of threads and thread group size—which can be done in dOCAL by using
the dOCAL function nd_range, rather than dim3. dOCAL allows the user to
arbitrarily choose weather setting the execution configuration as grid and block size
(using dOCAL’s function dim3) or as global and local size (using function nd_
range) for both OpenCL and CUDA device objects.

In the following, we demonstrate that dOCAL’s source-to-source translation
feature—from OpenCL to CUDA—contributes to a better kernel performance
due to the usually higher efficiency of CUDA on NVIDIA devices as compared to
OpenCL [25].

Figure 1 shows the measured speedups of the OpenCL GEMM kernel (general
matrix multiplication) of the popular OpenCL BLAS library CLBlast [34] on an

5128 A. Rasch et al.

1 3

NVIDIA Tesla K20 GPU; the bars show the speedup of the kernel when translated
by dOCAL to CUDA over their initial OpenCL implementation (higher is better).
We show the results for 20 input sizes that are heavily used in the deep learning
framework Caffe [24]; as concrete neural network, we use Caffe’s siamese sample
for handwriting recognition [29]. We observe that using an equivalent CUDA kernel
for CLBlast ’s OpenCL GEMM kernel leads to speedups of up to 2, because CUDA
generates more efficient NVIDIA machine code as compared to OpenCL [32]. The
overhead for the translation (not included in our measurements in Fig. 1)—250ms
on our system—is negligible because once the GEMM kernel is translated from
OpenCL to CUDA, it is automatically stored by dOCAL on the system and reused
for each new call—in the siamese sample, GEMM is called over > 106 times on
each input size in Fig. 1, requiring > 6 total computation time on our system.

Listing 5 demonstrates that using dOCAL, the CLBlast ’s OpenCL GEMM kernel
can be easily translated and executed in the CUDA programming framework. As shown
in line 5, the user only passes the kernel’s OpenCL code (line 1) to a dOCAL CUDA
device object (declared in line 3); dOCAL then automatically translates the OpenCL
code to CUDA, and uses the CUDA framework for executing the translated kernel.

4 Using dOCAL for distributed systems

In a distributed system (a.k.a. cluster) with several nodes, our dOCAL library ena-
bles conveniently executing OpenCL and CUDA kernels on nodes that are con-
nected via TCP/IP. For this, the user starts a dOCAL daemon process on the target

Fig. 1 Speedup (higher is better) of CLBlast’s OpenCL GEMM kernel [34] when translated with
dOCAL to CUDA as compared to its original OpenCL implementation on an NVIDIA Tesla K20 GPU
for 20 input sizes that are heavily used in the deep learning framework Caffe [24]

5129

1 3

dOCAL: high-level distributed programming with OpenCL and…

nodes; dOCAL then automatically handles node-to-node data transfers and starts
kernel computations on the nodes’ devices, using the Boost.Asio C++ networking
library [4].

Our example in Listing 3 which uses the devices of a single node can be eas-
ily extended to use the devices of all nodes: the user only replaces the func-
tion docal::get_all_local_devices<CUDA>() in line 8 by function
docal::get_all_devices<CUDA>(); dOCAL then automatically acquires
the devices of different nodes, transfers the devices’ input and output data over the
TCP/IP network and synchronizes the different nodes’ computations.

The user can also target specific remote devices. For this, a docal::device
object is initialized additionally with the target node’s name, rather than with
only the device name, device id or device properties. For example, the user uses
docal::device<CUDA>(“gpu_node”, 0) to get the CUDA device with id
0 on the node with name gpu_node. Alternatively to the node’s name, the user can
use the node’s IP address.

5 Data transfer optimizations

In addition to its standard buffer type docal::buffer (introduced in Sect. 2),
dOCAL provides two further buffer types: (1) docal::pinned_buffer and
(2) docal::unified_buffer; both are used analogously to dOCAL’s standard
buffer type. As compared to a dOCAL standard buffer, dOCAL’s pinned buffer uses
internally pinned main memory [38] which enables fast data transfers between a
node’s main memory and its devices’ memories, and pinned memory is also required
for overlapping data transfers with device computations [39]. However, since pinned
memory has a high allocation time, it should only be used if many data transfers are
performed. dOCAL’s unified buffer type uses unified memory [41] which is benefi-
cial when kernels access main memory sparsely and when the target device provides
hardware support for unified memory. Especially when targeting CPUs, using uni-
fied memory (a.k.a. zero-copy buffer in OpenCL [23]) avoids data transfers between
devices’ memory and main memory because for CPUs ’ device memories and main
memory coincide [23].

The OpenCL and CUDA documents [23, 38] recommend the programmer to
empirically test which allocation type—naive, pinned or unified—suits best for their
applications, dependent on the target hardware. However, testing these special allo-
cation types—pinned and unified—requires a significant effort from the program-
mer. For example, for using pinned memory in low-level OpenCL, the user has
to initialize an OpenCL-specific cl_mem object using the special flag CL_MEM_
ALLOC_HOST_PTR, and she has to use the special function clEnqueueMap-
Buffer to get access to the pinned memory region comprised by the cl_mem
object. Moreover, the user is in charge of explicitly synchronizing the buffer (e.g.,
before it is read by a kernel), using the function clEnqueueUnmapMemObject,
and user has to use multiple command queues—the OpenCL equivalent to CUDA
streams—to enable overlapping data transfers with computations [39].

5130 A. Rasch et al.

1 3

The two optimized dOCAL buffer types automatically handle the inconvenient
low-level interactions with the OpenCL and CUDA API for allocating and using
these special memory regions. Moreover, the user can easily switch between dif-
ferent allocation types by only changing the dOCAL buffer type, e.g., from
docal::buffer to docal::pinned_buffer to use pinned memory instead
of naively allocated memory.

Figure 2 (left) shows the runtime of Intel’s OpenCL ZeroCopy bench-
mark [20]—for evaluating unified memory—on an Intel Xeon E5 CPU, compared
to the runtime of an equivalent dOCAL program which uses dOCAL’s unified
buffer type—the Intel benchmark computes Ambient Occlusion which is popular in
the field of visual computing. According to the benchmark’s implementation, we
measure the runtime for data transfers and the kernel’s execution, i.e., we ignore
the runtimes for initializing OpenCL, compiling the kernel, etc. We observe that
dOCAL achieves competitive runtime with the low-level OpenCL code. This is
because dOCAL’s unified buffers use, analogously to the Intel’s benchmark, unified
memory which enables avoiding data transfers when targeting CPU architectures (as
discussed above).

Figure 2 (right) shows the runtime comparison of NVIDIA’s benchmark over-
lap-data-transfers [39] with dOCAL using its pinned buffer type; the
benchmark computes trigonometric functions to evaluate the performance of pinned
main memory. We perform experiments on an NVIDIA Tesla K20 GPU. Analo-
gously to before, we measure only the runtime for data transfers and the kernel exe-
cutions, according to our reference benchmark. dOCAL achieves the same perfor-
mance as the low-level CUDA code: dOCAL’s pinned buffers use internally pinned
main memory, analogously to the NVIDIA’s benchmark, thus enabling fast data
transfers and overlapping the transfers with computations.

6 Advanced dOCAL usage

6.1 dOCAL compatibility with existing OpenCL/CUDA libraries

There is a broad range of expert-implemented OpenCL/CUDA libraries, such as
the OpenCL linear algebra library CLBlast [34] and the CUDA library cuDNN

Fig. 2 Runtime comparison (lower is better) of dOCAL with low-level OpenCL and CUDA host code
for benchmarking the unified memory on Intel CPU (left) and pinned memory on NVIDIA GPU (right).
dOCAL achieves competitive performance with the low-level code

5131

1 3

dOCAL: high-level distributed programming with OpenCL and…

for Deep Learning applications [22]. To enable compatibility between dOCAL
and such libraries, dOCAL’s three buffer types (discussed in Sects. 2 and 5) can
be cast to the native buffer representation of OpenCL and CUDA: cl_mem in case
of OpenCL and void* in case of CUDA. This cast happens either automatically
in dOCAL—then, the OpenCL/CUDA buffer is returned that belongs to the most
recently used device—or, alternatively, the user can use the dOCAL buffers’ func-
tion get_cuda_buffer(dev) to get the CUDA buffer for a specific device
dev. Here, dev is either a dOCAL device object, the device’s name as string, or
device’s numerical CUDA device id. For OpenCL, dOCAL provides the analogous
member function get_opencl_buffer.

6.2 Auto‑tuning support

dOCAL supports the user in the cumbersome task of finding a kernel’s good-per-
forming values of performance-critical parameters, e.g., cache/thread block sizes
and loop unrolling factors. For this, dOCAL allows conveniently interconnecting
with an auto-tuning system—they use advanced search heuristics and/or machine
learning techniques to automatically explore the search space of a kernel’s perfor-
mance-critical parameters; the determined values are then used to build an opti-
mized kernel [1].

Auto-tuning systems for OpenCL and CUDA can be conveniently generated
by using the auto-tuning framework (ATF) [1]: the user annotates the kernel code
with tuning directives which specify its performance-critical parameters by their:
(1) types (e.g., int or float), (2) ranges of possible values, and (3) possible inter-
dependencies (e.g., a parameter has to evenly divide another parameter). ATF then
automatically generates the corresponding auto-tuner that optimizes the kernel for a
target hardware.

For connecting dOCAL with an auto-tuner, the user provides to dOCAL the con-
crete auto-tuner for its kernel, e.g., generated with ATF, by storing it to a corre-
sponding path on the hard drive. dOCAL then manages transparently from the user
the cumbersome tasks of (1) calling the auto-tuner for each device on which the ker-
nel is executed, (2) storing on the hard drive the auto-tuned kernel that is obtained
by the auto-tuner, and (3) reusing the auto-tuned version of the kernel in each fol-
lowing kernel execution.

For high-quality tuning results, auto-tuning has to be performed depending also
on runtime values (e.g., input size), and not only depending on the target device [53].
For this, the user generates the corresponding auto-tuner—this is described in detail
in [1]—and passes to the dOCAL kernel object the concrete runtime values using
dOCAL’s tuning function. For example, to auto-tune the reduction kernel (shown
in Listing 1) also for the input size N (Listing 3, line 5), the user: (1) provides the
input-aware auto-tuner for the kernel [1], and (2) initializes the dOCAL kernel (in
line 11) with the input size N using the tuning function, i.e., ocal::kernel
reduction = { cuda::source(/*...*/), tuning(N) };

5132 A. Rasch et al.

1 3

6.3 Profiling OpenCL/CUDA programs with dOCAL

dOCAL enables convenient profiling of OpenCL and CUDA programs, i.e., without
requiring the use of low-level profiling functions, such as cudaEventRecord and
cudaEventSynchronize (for CUDA), or clGetEventProfilingInfo and
clWaitForEvents (for OpenCL). To enable profiling in dOCAL, the user only
defines the C preprocessor macro dOCAL_ENABLE_PROFILING; dOCAL then
automatically measures and outputs the runtimes for initializing OpenCL/CUDA,
performing data transfers, executing kernels, and compiling the kernels. Addition-
ally, dOCAL stores the measured runtimes in a JSON file—a popular file format for
human-readable name-value pairs.

7 Experimental evaluation

We experimentally prove that dOCAL simplifies implementing host code for both
OpenCL and CUDA, with a low runtime overhead for abstraction. After describing
our experimental setup in Sect. 7.1, we report experimental results for a single-node
system (Sect. 7.2) and a multi-node system (Sect. 7.3).

7.1 Experimental setup

For the runtime evaluation, we use a system with two nodes, each equipped with two
Intel Xeon E5-2640 v2 8-core CPUs, clocked at 2GHz with 128GB main memory
and hyper-threading enabled, as well as two NVIDIA Tesla K20m GPUs; the two
nodes are connected via an InfiniBand FDR network. We perform experiments using
both the CPUs and GPUs as OpenCL devices. A node’s two CPUs are represented
in OpenCL as a single device with 32 compute units, corresponding to the overall
2 × 16 logical cores in the node. For runtime measurements, we use the unix time
command. As C++ compiler, we use clang version 3.8.1 with its -O3 optimiza-
tion flag enabled on the CentOS operating system version 7.4.

7.2 Single‑node experiments

We perform our single-node experiments by comparing to all of the expert-imple-
mented, real-world, multi-device code samples provided by Intel and NVIDIA
in [21] and [37] for OpenCL and CUDA, against equivalent dOCAL programs.
The Intel samples are: (1) intel_ocl_multidevice_basic for computing
scaled dot product and (2) intel_ocl_tone_mapping_multidevice for
high dynamic range tone mapping. For CUDA, we use the three NVIDIA’s samples:
(1) simpleMultiGPU for reduction, (2) MonteCarloMultiGPU for a Monte
Carlo experiment and (3) nbody for N-body simulation. We compare each sam-
ple against the equivalent dOCAL program in terms of both code complexity and
runtime.

5133

1 3

dOCAL: high-level distributed programming with OpenCL and…

We measure the code complexity using four classical metrics for development
effort: (1) lines of code (LOC), excluding blank lines and comments, (2) COCOMO
development effort (DE) in person-months [3], (3) McCabe’s cyclomatic complex-
ity (CC) [31] and (4) the Halstead development effort (HDE) [19]. McCabe’s cyc-
lomatic complexity is the number of linearly independent paths through the source
code, while the Halstead development effort metric is based on the number of oper-
ators and operands in the source code. Low cyclomatic complexity and Halstead
development effort imply that code is simpler to develop and debug. We measure
the metrics LOC and CC with the tool provided in [50], the DE with [10] and HDE
with [44].

Figure 3 compares the code complexity of the original OpenCL and CUDA
samples from the vendors with their dOCAL counterparts. The kernel code is
excluded in our measurements, because dOCAL and the OpenCL/CUDA samples
use the same kernel codes. We observe that dOCAL programs are significantly
simpler; on average they (1) require 2.72× fewer lines of code (LOC) in case of
OpenCL and 1.85× lines in case of CUDA, (2) require a 2.8× less development
effort (DE) in case of OpenCL and 1.9× in case of CUDA, (3) have a cyclomatic
complexity (CC) that is reduced by a factor of 2.73× for OpenCL and 1.7× for
CUDA, and 4) their Halstead development effort (HDE) is reduced by the factor
2.78× (OpenCL) and 1.79× (CUDA). Even for simple applications, e.g., scaled
dot product and reduction, dOCAL programs are significantly simpler than their
low-level OpenCL/CUDA equivalents, because of the boilerplate code required
by the low-level approaches, e.g., for initializing OpenCL/CUDA and for per-
forming data transfers. We observe that dOCAL programs achieve more reduction
in complexity for OpenCL than for CUDA, because OpenCL requires boilerplate
commands for devices of different vendors while CUDA targets NVIDIA devices
only.

Sample Code LOC DE CC HDE

OpenCL 293 0,68 21 57.523

dOCAL 54 0,12 8 10.729

OpenCL 523 1,25 88 290.102

dOCAL 246 0,57 32 114.451

CUDA 110 0,26 14 19.980

dOCAL 56 0,12 13 11.974

CUDA 336 0,82 32 131.259

dOCAL 190 0,45 24 76.337

CUDA 812 1,96 80 412.182

dOCAL 434 1,03 37 226.962

Reduction

Monte-Carlo

N-body

HDR-Tone-Mapping

Scaled-Dot-Product

Fig. 3 Code complexity of the OpenCL and CUDA samples as compared to their dOCAL counterparts
using the classical metrics: (1) lines of code (LOC), (2) COCOMO development effort (DE) in person
months, (3) McCabe’s cyclomatic complexity (CC) and (4) Halstead development effort (HDE). The
metrics indicate that dOCAL code is significantly simpler than low-level OpenCL and CUDA host code

5134 A. Rasch et al.

1 3

Figures 4 and 5 demonstrate the speedups (or slowdowns if < 1) of our high-level
dOCAL programs as compared to their corresponding low-level samples in OpenCL
and CUDA. We present results for each of dOCAL’s three buffer types—buffer (B),
pinned buffer (PB) and unified buffer (UB)—for which the OpenCL and CUDA doc-
uments recommend to naively test which type suits best for a particular combination
of target application and hardware architecture [23, 38]. The low-level samples all
use pinned main memory which corresponds to using dOCAL’s pinned buffer type
(the corresponding bars are filled dark gray for clarification). The Intel’s OpenCL
samples run on a node’s two Intel CPUs, and the NVIDIA CUDA samples run on
the node’s two NVIDIA GPUs.

We observe that dOCAL’s high-level approach causes a quite low runtime over-
head of < 2% in comparison with OpenCL and < 7% in comparison with CUDA
when using pinned memory (dark gray bars) as in the low-level samples. This is due
to modern compilers efficiency—in our case, the clang compiler—which signifi-
cantly optimize dOCAL’s abstraction overhead, e.g., by performing optimizations
such as inline expansion [7]. For the two further dOCAL’s buffer types—buffer and
unified buffer—we observe the same or sometimes even slightly better performance
of dOCAL as compared to the low-level samples. This is caused by the high alloca-
tion time for pinned memory which is used by the samples. In contrast, dOCAL’s

Fig. 4 Speedup/slowdown (higher is better) of dOCAL over Intel’s OpenCL samples on two Intel Xeon
E5 CPUs for each of dOCAL’s three buffer types: buffer (B), pinned buffer (PB) and unified buffer (UB).
The buffer type that corresponds to the memory used in the low-level samples is filled dark gray. Speed-
ups are computed using the median runtime of 30 runs. We observe that dOCAL’s performance is com-
petitive to low-level OpenCL host code

Fig. 5 Speedup/slowdown (higher is better) of dOCAL over NVIDIA’s CUDA samples on two NVIDIA
Tesla K20m GPUs using dOCAL’s three buffer types: buffer (B), pinned buffer (PB) and unified buffer
(UB). The buffer type that corresponds to the memory used in the low-level samples is filled dark gray.
Speedups are computed using the median runtime of 30 runs. dOCAL’s performance is competitive to
low-level CUDA host code

5135

1 3

dOCAL: high-level distributed programming with OpenCL and…

buffer (B) and unified buffer (UB) types use straightforwardly allocated memory or
unified memory, correspondingly, causing a lower allocation time (as discussed in
Sect. 5). The better performance of dOCAL for OpenCL as compared to CUDA is
because the OpenCL samples implement and use several helper functions, e.g., for
selecting the OpenCL platform, which causes runtime overhead.

7.3 Multi‑node experiment

We use the example of general matrix multiplication (GEMM) to demonstrate
dOCAL’s efficiency on multi-node systems. For this, we use the OpenCL GEMM
kernel provided by NVIDIA in [35].

Figure 6 shows GEMM ’s runtime on 16384 × 16384 matrices of single preci-
sion floating point numbers (float) when executed (1) on a single local GPU, (2) on
two local GPUs, and (3) on the four GPUs of two nodes, i.e., two local GPUs (first
node) and two remote GPUs (second node). We observe that switching from a single
local GPU to two local GPUs increases performance by a factor of 1.6; when using
the second node’s two remote GPUs as well (i.e., four GPUs in total), performance
is increased further by a factor of 1.3. Performance increases more significantly
when doubling the number of local GPUs, rather than when doubling the number of
remote GPUs, because using remote GPUs requires communication between differ-
ent nodes. For example, in case of GEMM, chunks of the input matrices have to be
transferred over the network from the local node to the remote node, making nearly
5 seconds of runtime. If excluding this overhead, we would achieve again a speedup
of nearly 1.6× (instead of a speedup of only 1.3), i.e., the overhead for using the
remote GPUs is mainly caused by the (inherent) node-to-node data transfers over the
InfiniBand network.

Fig. 6 Runtime comparison (lower is better) of NVIDIA’s general matrix multiplication (GEMM) in
OpenCL when executed (1) on a single local GPU, (2) on two local GPUs, and (3) on two local GPUs
and two remote GPUs. Doubling the number of local GPUs speeds up performance by a factor of 1.6;
using in addition two remote GPUs increases performance further by a factor of 1.3

5136 A. Rasch et al.

1 3

8 Conclusion

We present dOCAL—a high-level C++ library for conveniently implementing
OpenCL and CUDA host code. dOCAL allows easily executing arbitrary OpenCL
and CUDA kernels on the devices of different nodes by automatically managing
different nodes’ main memories and their devices’ memories, performing node-to-
node communication, handling synchronization, minimizing data transfers and sup-
porting data transfer optimization between device and main memory. Furthermore,
dOCAL allows interoperability between OpenCL and CUDA host code by automati-
cally moving data between OpenCL and CUDA data structures and by performing
source-to-source translation between the OpenCL and CUDA kernel languages. Our
experimental evaluation on real-world samples from Intel and NVIDIA shows that
dOCAL arguably simplifies host code as compared to standard OpenCL and CUDA,
with a low runtime overhead for abstraction.

In future work, we will demonstrate dOCAL’s efficiency for a broad range
of applications. Furthermore, we aim to improve our OpenCL-to-CUDA/
CUDA–OpenCL translation engine, e.g., by supporting advanced C++ features such
as automatic type deduction and template meta programming.

References

 1. Rasch A, Gorlatch S (2018) ATF: a generic, directive-based auto-tuning framework. In: CCPE, pp
1–16. https ://doi.org/10.1002/cpe.4423

 2. Aldinucci M et al (2015) The loop-of-stencil-reduce paradigm. In: IEEE Trustcom/BigDataSE/
ISPA, pp 172–177

 3. Boehm B et al (1995) Cost models for future software life cycle processes: COCOMO 2.0. In:
Annals of software engineering, pp 57–94

 4. Boost: Boost.Asio (2018). http://www.boost .org/doc/libs/1_66_0/doc/html/boost _asio.html
 5. Castro D et al (2016) Farms, pipes, streams and reforestation: reasoning about structured parallel

processes using types and hylomorphisms. In: Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP, pp 4–17

 6. Cedric A et al (2011) StarPU: a unified platform for task scheduling on heterogeneous multicore
architectures. In: Concurrency and computation: practice and experience, pp 187–198

 7. Chang PP et al (1989) Inline function expansion for compiling C programs. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp 246–257

 8. Dagum L et al (1998) OpenMP: an industry-standard api for shared-memory programming. In:
IEEE computational science and engineering, pp 46–55

 9. Dastgeer U et al (2014) The PEPPHER composition tool: performance-aware dynamic composition
of applications for GPU-based systems. In: Computing, pp 1195–1211

 10. Wheeler David A (2018) SLOCCount. https ://www.dwhee ler.com/slocc ount/
 11. Du P et al (2012) From CUDA to OpenCL: towards a performance-portable solution for multi-plat-

form GPU programming. In: Parallel computing, pp 391 – 407
 12. Duato J et al (2010) rCUDA: reducing the number of GPU-based accelerators in high performance

clusters. In: International Conference on High Performance Computing Simulation, pp 224–231
 13. Duran A et al (2011) OmpSs: a proposal for programming heterogeneous multi-core architectures.

In: Parallel processing letters, pp 173–193
 14. Enmyren J et al (2010) SkePU: a multi-backend skeleton programming library for multi-GPU sys-

tems. In: HLPP, pp 5–14
 15. Ernsting S et al (2011) Data parallel skeletons for GPU clusters and multi-GPU systems. In:

PARCO, pp 509–518

https://doi.org/10.1002/cpe.4423
http://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio.html
https://www.dwheeler.com/sloccount/

5137

1 3

dOCAL: high-level distributed programming with OpenCL and…

 16. Gorlatch S, Cole M (2011) Parallel skeletons. In: Encyclopedia of parallel computing, pp 1417–1422
 17. Grasso I et al (2013) LibWater: heterogeneous distributed computing made easy. In: Proceedings of

the 27th International ACM Conference on International Conference on Supercomputing, ICS, pp
161–172

 18. Haidl M, Gorlatch S (2014) PACXX: towards a unified programming model for programming accel-
erators using C++14. In: LLVM compiler infrastructure in HPC, pp 1–11

 19. Halstead MH (1977) Elements of software science. Elsevier computer science library: operational
programming systems series

 20. Intel: Ambient Occlusion Benchmark (AOBench) (2014). http://code.googl e.com/p/aoben ch
 21. Intel: Code Samples (2018). https ://softw are.intel .com/en-us/intel -openc l-suppo rt/code-sampl es
 22. Intel: CUDA Deep Neural Network Library (2018). https ://devel oper.nvidi a.com/cudnn
 23. Intel: how to increase performance by minimizing buffer copies on intel processor graphics (2018).

https ://softw are.intel .com/en-us/artic les/getti ng-the-most-from-openc l-12-how-to-incre ase-perfo
rmanc e-by-minim izing -buffe r-copie s-on-intel -proce ssor-graph ics

 24. Jia Y et al (2014) Caffe: convolutional architecture for fast feature embedding. In: arXiv preprint
arXiv :1408.5093

 25. Karimi K et al (2010) A performance comparison of CUDA and OpenCL. In: CoRR
 26. Kegel P et al (2012) dOpenCL: towards a uniform programming approach for distributed hetero-

geneous multi-/many-core systems. In: IEEE 26th international parallel and distributed processing
symposium workshops PhD forum, pp 174–186

 27. Kim J et al (2012) SnuCL: an OpenCL framework for heterogeneous CPU/GPU clusters. In: Pro-
ceedings of the 26th ACM International Conference on Supercomputing, ICS, pp 341–352

 28. Klöckner A et al (2012) PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time
code generation. In: Parallel computing, pp 157 – 174

 29. Koch G et al (2015) Siamese neural networks for one-shot image recognition. In: ICML deep learn-
ing workshop

 30. Lee S et al (2010) OpenMPC: extended OpenMP programming and tuning for GPUs. In: ACM/
IEEE International Conference for high Performance Computing, Networking, Storage and Analy-
sis, pp 1–11

 31. McCabe T.J (1976) A complexity measure. In: IEEE transactions on software engineering, pp
308–320

 32. Memeti S et al (2017) Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming pro-
ductivity, performance, and energy consumption. In: Workshop on adaptive resource management
and scheduling for cloud computing, pp 1–6

 33. Moreton-Fernandez A et al (2017) Multi-device controllers: a library to simplify parallel heteroge-
neous programming. Int J Parallel Program 47(1):94–113

 34. Nugteren C (2016) CLBlast: a tuned OpenCL BLAS library. In: CoRR
 35. NVIDIA: nvidia-opencl-examples. https ://githu b.com/sscha etz/nvidi a-openc l-examp les (2012)
 36. NVIDIA: OpenCL samples (2012). https ://githu b.com/sscha etz/nvidi a-openc l-examp les/
 37. NVIDIA: CUDA Toolkit 9.1 (2018). https ://devel oper.nvidi a.com/cuda-toolk it
 38. NVIDIA: how to optimize data transfers in CUDA C/C++ (2018). https ://devbl ogs.nvidi a.com/

how-optim ize-data-trans fers-cuda-cc/
 39. NVIDIA: how to overlap data transfers in CUDA C/C++ (2018). https ://devbl ogs.nvidi a.com/how-

overl ap-data-trans fers-cuda-cc/
 40. NVIDIA: hyper-Q (2018). http://devel oper.downl oad.nvidi a.com/compu te/DevZo ne/C/html_x64/6_

Advan ced/simpl eHype rQ/doc/Hyper Q.pdf
 41. NVIDIA: unified memory for CUDA beginners (2018). https ://devbl ogs.nvidi a.com/unifi ed-memor

y-cuda-begin ners/
 42. Pérez B et al (2016) Simplifying programming and load balancing of data parallel applications on

heterogeneous systems. In: GPGPU, pp 42–51
 43. Reyes R et al (2015) SYCL: single-source C++ accelerator programming. In: PARCO, pp 673–682
 44. rharish100193: halstead metrics tool (2016). https ://sourc eforg e.net/proje cts/halst eadme trics tool/
 45. Rompf T et al (2015) Go meta! A case for generative programming and DSLs in performance criti-

cal systems. In: LIPIcs–Leibniz international proceedings in informatics, pp 238–261
 46. Rupp K et al (2010) Automatic performance optimization in ViennaCL for GPUs. In: POOSC, pp

1–6
 47. Spafford K et al (2010) Maestro: data orchestration and tuning for OpenCL devices. In: Euro-Par–

parallel processing. Springer, Berlin, pp 275–286

http://code.google.com/p/aobench
https://software.intel.com/en-us/intel-opencl-support/code-samples
https://developer.nvidia.com/cudnn
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
https://software.intel.com/en-us/articles/getting-the-most-from-opencl-12-how-to-increase-performance-by-minimizing-buffer-copies-on-intel-processor-graphics
http://arxiv.org/abs/1408.5093
https://github.com/sschaetz/nvidia-opencl-examples
https://github.com/sschaetz/nvidia-opencl-examples/
https://developer.nvidia.com/cuda-toolkit
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://sourceforge.net/projects/halsteadmetricstool/

5138 A. Rasch et al.

1 3

 48. Standard C++ foundation foundation members: ISO C++ (2018). https ://isocp p.org
 49. Steuwer M et al (2011) SkelCL—a portable skeleton library for high-level GPU programming. In:

IEEE IPDPS workshops, pp 1176–1182
 50. Steve Arnold: CCCC project documentation (2005). http://sarno ld.githu b.io/cccc/
 51. Szuppe J (2016) Boost.Compute: a parallel computing library for C++ based on OpenCL. In:

IWOCL, pp 1–39
 52. Tejedor E et al (2011) ClusterSs: a task-based programming model for clusters. In: Proceedings of

the 20th international symposium on high performance distributed computing, HPDC, pp 267–268
 53. Tillet P, Cox D (2017) Input-aware auto-tuning of compute-bound HPC kernels. In: SC, pp 1–12
 54. Vinas M et al (2015) Improving OpenCL programmability with the heterogeneous programming

library. In: International Conference on Computational Science, ICCS, pp 110 – 119
 55. Wienke S et al (2012) OpenACC—first experiences with real-world applications. In: Euro-Par par-

allel processing, pp 859–870

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Ari Rasch1 · Julian Bigge1 · Martin Wrodarczyk1 · Richard Schulze1 ·
Sergei Gorlatch1

 Julian Bigge
 j.bigge@uni-muenster.de

 Martin Wrodarczyk
 m.wrod@uni-muenster.de

 Richard Schulze
 r.schulze@uni-muenster.de

 Sergei Gorlatch
 gorlatch@uni-muenster.de

1 Department of Mathematics and Computer Science, University of Münster, Münster, Germany

https://isocpp.org
http://sarnold.github.io/cccc/
http://orcid.org/0000-0002-0286-0755

	dOCAL: high-level distributed programming with OpenCL and CUDA
	Abstract
	1 Motivation and related work
	2 Illustration of dOCAL
	2.1 Using dOCAL for deploying CUDA host code
	2.2 Using dOCAL for deploying OpenCL host code

	3 OpenCL-CUDA interoperability in dOCAL
	4 Using dOCAL for distributed systems
	5 Data transfer optimizations
	6 Advanced dOCAL usage
	6.1 dOCAL compatibility with existing OpenCLCUDA libraries
	6.2 Auto-tuning support
	6.3 Profiling OpenCLCUDA programs with dOCAL

	7 Experimental evaluation
	7.1 Experimental setup
	7.2 Single-node experiments
	7.3 Multi-node experiment

	8 Conclusion
	References

